Journal of Electroceramics

, Volume 14, Issue 3, pp 177–191 | Cite as

High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge

  • C. A. Randall
  • A. Kelnberger
  • G. Y. Yang
  • R. E. Eitel
  • T. R. Shrout


Piezoelectric actuators are at an important stage of their development into a large component market. This market pull is for dynamically driven actuators for Diesel injector valves in automobiles. Cost, yield, and reliability are important concerns for the automobile industry. A number of these concerns relate back to basic material science issues in the manufacture of the piezoelectric actuators. This paper discusses material development of the piezoelectric ceramic and new opportunities for higher temperature materials. An important consideration in developing low-fire ceramics is the flux selection for a given system, and these must be selected to limit electrode-ceramic interface reactions in both Ag/Pd and copper-metallized electrode actuators.


piezoelectrics electrode interface multilayers actuators copper Ag-Pd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Zhao, M.C. Lai, and D.L. Harrington, Prog. in Energy and Combustion Science, 25(5), 437 (1999).Google Scholar
  2. 2.
    P.J. Tennison and R. Rertz, J. of Engineering for Gas Turbines and Power, Transactions of the ASME Engine, 123(1), 167 (2001).Google Scholar
  3. 3.
    Professional Engineering, 16(1), 54 (2003).Google Scholar
  4. 4.
    V. Bottom, Introduction to Quartz Crystal Unit Design (Van Nostrand Reinhold Co., NY, 1982).Google Scholar
  5. 5.
    IEEE Standard on Piezoelectricity (American National Standards Institute, Washington, DC, 1976).Google Scholar
  6. 6.
    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
  7. 7.
    J.M. Herbert, Ferroelectrics Transducers and Sensors (Gordon Breach Science Publishers, New York, 1982).Google Scholar
  8. 8.
    K. Yanagiwawa, H. Kanai, and Y. Yamashita, Jap. J. Appl. Phys., 34, 536 (1995).Google Scholar
  9. 9.
    H. Ochi, J. Am. Ceram. Soc., 48, 630 (1965).Google Scholar
  10. 10.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, and S.E. Park, Jap. J. Appl. Phys., 40(1), 599 (2001).Google Scholar
  11. 11.
    R.E. Eitel, C.A. Randall, and T.R. Shrout, Jap. J. Appl. Phys., 41(49), 2099 (2002).Google Scholar
  12. 12.
    S.J. Zhang, C.A. Randall, and T.R. Shrout, Appl. Phys. Lett., 83, 3150 (2003).Google Scholar
  13. 13.
    T. Song, R.E. Eitel, T.R. Shrout, and W. Hackenberger, Jap. J. Appl. Phys., 42, 5101 (2003).Google Scholar
  14. 14.
    C.A. Randall, R.E. Eitel, T.R. Shrout, and I.M. Reaney, J. Appl. Phys., 93(11), 9271 (2003).Google Scholar
  15. 15.
    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, and I.M. Reaney, J. Appl. Phys., 95(17), 3633 (2004).Google Scholar
  16. 16.
    C.A. Randall, R.E. Eitel, C. Stringer, T.H. Song, S.J. Zhang, and T.R. Shrout, Piezoelectric Single Crystals and Their Applications, edited by S. Trolier-McKinstry, L.E. Cross, and Y. Yamashita (Published Privately, University Park, PA, 2004) pp. 346–365.Google Scholar
  17. 17.
    H. Thomann, Zeitshcrift für Angewandte Physik, 20, 554 (1966).Google Scholar
  18. 18.
    F. Kulscar, J. Am. Ceram. Soc., 42(7), 343 (1959).Google Scholar
  19. 19.
    I. Ueda, Jap. J. Appl. Phys., 11(4), 450 (1972).Google Scholar
  20. 20.
    G.H. Haertling, J. Am. Ceram. Soc., 50, 329 (1967).Google Scholar
  21. 21.
    K. Carl and K.H. Hardtl, Phys. Sol. Stat. (A), 8, 87 (1971).Google Scholar
  22. 22.
    L. Eyrand, P. Eyrand, and B. Claudel, J. Sol. Stat. Chem., 53, 266 (1984).Google Scholar
  23. 23.
    P. Gerthsen, K.H. Hardtl, and N.A. Schmidt, J. Appl. Phys., 51(2), 1131 (1980).Google Scholar
  24. 24.
    G. Arlt, H. Dederichs, and R. Herbert, Ferroelectrics, 74, 37 (1987).Google Scholar
  25. 25.
    L. Rayleigh, Philosophical Mag., 23(142), 225 (1987).Google Scholar
  26. 26.
    D.V. Taylor and D. Damjanovic, J. Appl. Phys., 82(4), 1973 (1997).Google Scholar
  27. 27.
    D. Damjanovic and M. Demartin, J. Phys. Condensed Matter, 9, 4943 (1997).Google Scholar
  28. 28.
    D.A. Hall, J. Mat. Science, 36, 4575 (2001).Google Scholar
  29. 29.
    D. Damjanovic and G. Robert, Piezoelectric Materials in Devices, edited by N. Setter, (Switzerland), pp. 353–388.Google Scholar
  30. 30.
    L.J. Bowen, T.R. Shrout, W.A. Schulze, and J.V. Biggers, Ferroelectrics, 27, 59 (1980).Google Scholar
  31. 31.
    S. Takahashi, A. Ochi, M. Yonezawa, T. Yano, T. Hamatsuki, and I. Fukui, Ferroelectrics, 50, 181 (1983).Google Scholar
  32. 32.
    K. Uchino, Acta Mater., 46(1), 3745 (1998).Google Scholar
  33. 33.
    K. Lubitz, C. Schuh, T. Steinkopff, and A. Wolff, Piezoelectric Materials in Devices, edited by N. Setter (Switzerland), pp. 183–194.Google Scholar
  34. 34.
    S.F. Wang, J.P. Dougherty, W. Huebner, and J.G. Pepin, J. Am. Ceram. Soc., 77(12), 3051 (1994).Google Scholar
  35. 35.
    P. Groen, American Ceramic Society Meeting (American Ceramic Society, Cocoa Beach, 1993).Google Scholar
  36. 36.
    C.A. Randall, A. Kelnberger, T. Shrout (in progress).Google Scholar
  37. 37.
    Y.M. Chiang, D. Birnie III and W.D. Kingery, Physical Ceramics} (J. Wiley {& Sons, Inc., New York, Cincinnati, Toronto, Brisbane, Singapore, 1996).Google Scholar
  38. 38.
    M. Kondo and K. Kurihara, J. Am. Ceram. Soc., 84(11), 2469 (2001).Google Scholar
  39. 39.
    R.B. Atkin, R.L. Homan, and R.M. Fulrath, J. Am. Ceram. Soc., 54, 113 (1971).Google Scholar
  40. 40.
    A.I. Kingon and J.B. Clark, J. Am. Ceram. Soc., 66(4), 256 (1983).Google Scholar
  41. 41.
    K. Murakami, D. Mabuchi, T. Kurita, Y. Niwa, and S. Kaneko, Jap. J. Phys., 35, 5188 (1996).Google Scholar
  42. 42.
    X.X. Wang, K. Murakami, O. Sugiyama, and S. Kaneko, J. European Ceram. Soc., 21, 1367 (2001).Google Scholar
  43. 43.
    D.E. Wittmer and R.C. Buchanan, J. Am. Ceram. Soc., 64, 485 (1981).Google Scholar
  44. 44.
    X. Wang, P. Lu, and W. Xue, in Proceedings of Sixth International Symposium on Applications of Ferroelectrics (ISAF, 1992) USA, pp. 585–587.Google Scholar
  45. 45.
    C.H. Wang and L. Wu, Jap. J. Appl. Phys., 32(7), 3204 (1993).Google Scholar
  46. 46.
    T. Hayashi, T. Inoue, and Y. Akiyama, J. European Ceram. Soc., 29, 999 (1999).Google Scholar
  47. 47.
    A.K. Saha, D. Kumar, O. Parkash, A. Sen, and H.S. Maiti, Mat. Res. Bull., 38, 1165 (2003).Google Scholar
  48. 48.
    C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, and T.R. Shrout, J. Mat. Res., 8(4), 880 (1993).Google Scholar
  49. 49.
    G. Helke, S. Seifert, and S.-J. Cho, J. European Ceramic Soc., 19, 1265 (1999).Google Scholar
  50. 50.
    C.A. Randall, A.D. Hilton, D.J. Barber, and T.R. Shrout, J. Mat. Res., 8(4), 880 (1993).Google Scholar
  51. 51.
    K. Nagata and J. Thougrueng, Jap. J. Appl. Phys., 37(9B), 5306 (1998).Google Scholar
  52. 52.
    J.C. Liu and J.Y. Chan, Mat. Chem. and Physics, 43, 256 (1996).Google Scholar
  53. 53.
    H. Kanai, O. Furukawa, S. Nakamura, and Y. Yamashita, J. Am. Ceramics Soc., 76(2), 454 (1993).Google Scholar
  54. 54.
    T. Takeuchi, T. Tani, and Y. Saito, Jap. J. Appl. Phys. Part 1, 9B, 5553 (1999).Google Scholar
  55. 55.
    T. Tani, J. Kor. Phys. Soc., 32, S1217 (1998).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • C. A. Randall
    • 1
  • A. Kelnberger
    • 1
    • 2
  • G. Y. Yang
    • 1
  • R. E. Eitel
    • 1
  • T. R. Shrout
    • 1
  1. 1.Center for Dielectric StudiesThe Pennsylvania State UniversityUSA
  2. 2.Robert Bosch GmbH, Dept. FV/FLWStuttgartGermany

Personalised recommendations