Journal of Electroceramics

, Volume 14, Issue 2, pp 95–102 | Cite as

Copper Compatible Barium Titanate Thin Films for Embedded Passives

  • Jon Ihlefeld
  • Brian Laughlin
  • Alisa Hunt-Lowery
  • William Borland
  • Angus Kingon
  • Jon-Paul Maria


Barium titanate thin films have been prepared by chemical solution deposition on 18 μ m thick, industry standard copper foils in the absence of chemical barrier layers. The final embodiment exhibits randomly oriented BaTiO3 grains with diameters between 0.1 and 0.3 μ m, and an equiaxed morphology. The average film thickness is 0.6 μ m and the microstructure is free from secondary or interfacial phases. The BaTiO3 films are sintered in a high temperature reductive atmosphere such that copper oxidation is avoided. Subsequent lower-temperature, higher oxygen pressure anneals are used to minimize oxygen point defects. Permittivities of 2500 are observed at zero bias and room temperature, with permittivities greater than 3000 at the coercive field. Loss tangents under 1.5% are demonstrated at high fields. The BaTiO3 phase exhibits pronounced ferroelectric switching and coercive field values near 10 kV/cm. Temperature dependent measurements indicate a ferroelectric transition near 100C with very diffuse character. Combining the approaches of the multilayer capacitor industry with traditional solution processed thin films has allowed pure barium titanate to be integrated with copper. The high sintering temperature—as compared to typical film processing—provides for large grained films and properties consistent with well-prepared ceramics. Integrating BaTiO3 films on copper foil represents an important step towards high capacitance density embedded passive components and elimination of economic constraints imparted by traditional noble metallization.


barium titanate copper ferroelectric film capacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Madou and L. Martens, IEEE Transactions on Electromagnetic Compatability, 43(4), 549 (2001).Google Scholar
  2. 2.
    L.-S. Chen, S.-L. Fu, and K.-D. Huang, Jpn. J. Appl. Phys., 37(2) No. 10B, L1241 (1998).Google Scholar
  3. 3.
    B. Lee and J. Zhang, Thin Solid Films, 338, 107 (2001).Google Scholar
  4. 4.
    H.-Y. Tian, W.-G. Luo, X.-H. Pu, and A.-L. Ding, J. Matl. Sci. Letters, 19, 1211 (2000).Google Scholar
  5. 5.
    S. Hoffmann and R. Waser, J. Eur. Cer. Soc., 19, 1339 (1999).Google Scholar
  6. 6.
    N.V. Giridharan, R. Varatharajan, R. Jayavel, and P. Ramasamy, Mat. Chem. Phys., 65, 261 (2000).Google Scholar
  7. 7.
    J.-P. Maria, K. Cheek, S. Streiffer, S.-H. Kim, and A. Kingon, J. Amer. Cer. Soc., 84(10), 2436 (2001).Google Scholar
  8. 8.
    K. Saegusa, Jpn. J. Appl. Phys., 36(11) Part 1, 6888 (1997).Google Scholar
  9. 9.
    Q. Zou, H.E. Ruda, and B.G. Yacobi, Appl. Phys. Lett., 78(9), 1282 (2001).Google Scholar
  10. 10.
    J.T. Dawley and P.G. Clem, Appl. Phys. Lett., 81(16), 3028 (2002).Google Scholar
  11. 11.
    J.M. Herbert, Trans. Br. Cer. Soc., 62(8), 645 (1963).Google Scholar
  12. 12.
    J.M. Herbert, Proc. IEE, 112(7), 1474 (1965).Google Scholar
  13. 13.
    I. Burn and G.H. Maher, J. Mater. Sci. Eng., 10, 633 (1975).Google Scholar
  14. 14.
    J.T. Dawley, P.G. Clem, M.P. Siegal, D.R. Tallant, and D.L. Overmyer, J. Mater. Res., 17(8), 1900 (2002).Google Scholar
  15. 15.
    D.R. Gaskell, Introduction to the Thermodynamics of Materials (Taylor {&} Francis Books, Inc., New York, 2003), p. 359.Google Scholar
  16. 16.
    R.W. Schwartz, P.G. Clem, J.A. Voigt, E.R. Byhoff, M. Van Stry, T.J. Headley, and N.A. Missert, J. Am. Ceram. Soc., 82(9), 2359 (1999).Google Scholar
  17. 17.
    G. Arlt, D. Hennings, and G. de With, J. Appl. Phys., 58(4), 1619 (1985).Google Scholar
  18. 18.
    M.H. Frey, Z. Xu, P. Han, and D.A. Payne, Ferroelectrics, 206–207, 937 (1998).Google Scholar
  19. 19.
    C.B. Parker, J.-P. Maria, and A.I. Kingon, Appl. Phys. Lett., 81(2), 340 (2002).Google Scholar
  20. 20.
    M. Rekas, Solid State Ionics, 20, 55 (1986).Google Scholar
  21. 21.
    H.T. Langhammer, T. Müller, R. Böttcher, and H.-P. Abicht, Solid State Sciences, 5, 965 (2003).Google Scholar
  22. 22.
    B. Jaffe, W.R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press Limited, Marietta, OH, 1971), p. 159.Google Scholar
  23. 23.
    H.B. Sharma and A. Mansingh, J. Mat. Sci., 33, 4455 (1998).Google Scholar
  24. 24.
    T. Sakudo, J. Phys. Soc. Japan, 12, 1050 (1957).Google Scholar
  25. 25.
    A. Inoue, M. Iha, I. Matsuda, H. Uwe, and T. Sakudo, Jpn. J. Appl. Phys., 30(9B), 2388 (1991).Google Scholar
  26. 26.
    T. Hayashi, N. Ohji, K. Hirohara, T. Fukunaga, and H. Maiwa, Jpn. J. Appl. Phys., 32(1, 9B), 4092 (1993).Google Scholar
  27. 27.
    C. Basceri, S.K. Streiffer, A.I. Kingon, and R. Waser, J. Appl. Phys., 82(5), 2497 (1997).Google Scholar
  28. 28.
    C.-R. Cho, S.-I. Kwun, T.-W. Noh, and M.-S. Jang, Jpn. J. Appl. Phys., 36(1, 4A), 2196 (1997).Google Scholar
  29. 29.
    H.B. Sharma and A. Mansingh, J. Mat. Sci., 33, 4455 (1998).Google Scholar
  30. 30.
    S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, and A.I. Kingon, J. Appl. Phys., 86(8), 4565 (1999).Google Scholar
  31. 31.
    J.-G. Cheng, X.-J. Meng, B. Li, S.-L. Guo, J.-H. Chu, M. Wang, H. Wang, and Z. Wang, Appl. Phys. Lett., 75(14), 2132 (1999).Google Scholar
  32. 32.
    J. Thongrueng, K. Nishio, Y. Watanabe, K. Nagata, and T. Tsuchiya, Pub. Cer. Soc. Jpn., 181–182, 85 (2000).Google Scholar
  33. 33.
    R. Thomas, V.K. Varadan, S. Komarneni, and D.C. Dube, J. Appl. Phys., 90(3), 1480 (2001).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jon Ihlefeld
    • 1
  • Brian Laughlin
    • 1
  • Alisa Hunt-Lowery
    • 1
  • William Borland
    • 2
  • Angus Kingon
    • 1
  • Jon-Paul Maria
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleigh
  2. 2.DuPont Electronic Technologies

Personalised recommendations