Journal of Electroceramics

, Volume 15, Issue 1, pp 5–11 | Cite as

The Applicability of Sr-deficient n-type SrTiO3 for SOFC Anodes

  • T. Kolodiazhnyi
  • A. Petric


Here we discuss the effect of preparation conditions on structural stability and electrical properties of Sr-deficient n-type SrTiO3. In particular, an explanation of a wide scatter of conductivity values in Y- and Nb-doped SrTiO3. reported in the literature is proposed, based on the existing defect chemistry model of n-doped SrTiO3. It was confirmed that when sintered in air, Sr-deficient SrTiO3 doped with Nb and/or Y, remains single phase until the solubility limit (e.g., 30% for Nb or 4% for Y). However, when sintered at low po2, the material transforms from a vacancy compensated to an electronically compensated compound with a strontium deficient second phase. Measured at 800°C in low po2, the maximum conductivity of these multi-phase compounds was 340 S/cm and 100 S/cm for the Nb-doped and Y-doped sample, respectively. However, the conductivity dropped dramatically to less than 10 S/cm when samples of the same compositions were sintered in air, again measured in reducing atmosphere.


SrTiO3 point defects second phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.J. Visco, C.P. Jacobson, I.Villareal, A. Leming,Y. Matus, and L.C. deJonghe, Electrochem. Soc. Proc., 2003-07, 1040 (2003).Google Scholar
  2. 2.
    G. Pudmich, W. Jugen, and F. Tiez,in 6-th Int. Solid Oxide Fuel Cell Symp., Electrochemical SocietyProceedings, edited by S.C Singhal and M. Dokiya (1999) vol. 99–19, p. 577.Google Scholar
  3. 3.
    P.R. Slater, D.P. Fagg, and J.T.S. Irvine, J.Mater. Chem., 7, 2495 (1997).Google Scholar
  4. 4.
    S. Hui and A. Petric, J. Electrochem. Soc., 149, J1(2002).CrossRefGoogle Scholar
  5. 5.
    O.A. Marina, N.L. Canfield, and J.W. Stevenson, Solid State Ionics, 149, 21 (2002).Google Scholar
  6. 6.
    S. Koutcheiko, Y. Yoo, and A. Petric, in Proc. 5th European Solid Oxide FuelCell Forum, Lucerne (CH) (2002) vol. 2, p. 655.Google Scholar
  7. 7.
    S. Hui,Ph.D. Thesis, Evaluation of the n-doped for solid oxide fuelcell anode. McMaster University, Hamilton, Canada, 2000.Google Scholar
  8. 8.
    H.P.R. Frederikse, W.R. Hosler, W.R. Thurber, J. Babiskin, and P.G.Siebermann, Phys. Rev., 158, 775 (1967).CrossRefGoogle Scholar
  9. 9.
    D.M. Eagles, in Physics of Disordered Materials, edited by D.Adler (Plenum, New York, 1985), p. 357.Google Scholar
  10. 10.
    R.Moos, S. Schöllhammer, and K.H.Härdtl, Appl. Phys. A, 65, 291 (1997).CrossRefGoogle Scholar
  11. 11.
    P. Calvani, M.Capizzi, F. Donato, S. Lupi, P. Maselli, and D. Peschiaroli,Phys. Rev. B., 47, 8917 (1993).Google Scholar
  12. 12.
    R. Moos, A. Gnudi, and K.H. Härdtl,J. Appl. Phys., 78, 5042 (1995).Google Scholar
  13. 13.
    C. Lee, J. Destry, andJ.L. Brebner, Phys. Rev. B., 11, 2299 (1975).Google Scholar
  14. 14.
    D.A. Crandles, B. Nicholas, C. Dreher, C.C. Homes, A.W. McConnell, B.P.Clayman, W.H. Gong, and J.E. Greedan, Phys. Rev. B., 59, 12842 (1999).CrossRefGoogle Scholar
  15. 15.
    F. Gervais, J.-L. Servoin, A. Baratoff, J.G. Bednorz, and G. Binnig,Phys. Rev. B., 47, 8187 (1993).Google Scholar
  16. 16.
    A.M.J.H. Seuter, Philips Res. Repts., 3(Suppl) 1 (1974).Google Scholar
  17. 17.
    R. Moos and K.H. Härdtl,J. Am. Ceram. Soc., 80, 2549 (1997).Google Scholar
  18. 18.
    D.M. Smyth, J.Electroceram., 9, 179 (2002).CrossRefGoogle Scholar
  19. 19.
    R. Meyer and R. Waser, Sensors and Actuators B,101, 335 (2004).Google Scholar
  20. 20.
    M.J. Akhtar, Z-U-N Akhtar, R.A. Jackson, andC.R.A. Catlow, J. Am. Ceram. Soc., 78, 421 (1995).Google Scholar
  21. 21.
    R. Meyer, R. Waser, J. Helmbold, and G. Borchardt, J. Electroceramics., 9, 103 (2002).Google Scholar
  22. 22.
    J. Daniels and K.H. Härdtl, Philips Res. Repts., 31, 489 (1976).Google Scholar
  23. 23.
    U. Balachandran and N.G. Eror, J. Electrochem. Soc.,129, 1021 (1982).Google Scholar
  24. 24.
    R. Moos, T. Bischoff, W. Menesklou, and K.H. Härdtl,J. Mater. Sci., 32, 4247 (1997).CrossRefGoogle Scholar
  25. 25.
    S.N.Ruddlesden and P.Popper,Acta Crystall., 11, 54 (1958).Google Scholar
  26. 26.
    P.D. Battle, J.E. Bennett, J. Sloan, R.J.D. Tilley, andJ.F. Vente, J. Solid State Chem., 149, 360 (2000).CrossRefGoogle Scholar
  27. 27.
    W. Menesklou, H-J. Schreiner, K.H.Härdtl, and E. Ivers-Tiffée, Sensors and Actuators B, 59, 184 (1999).Google Scholar
  28. 28.
    T. Suzuki, Y. Nishi, and M Fujimoto,Philos. Mag. A, 80, 621 (2000).Google Scholar
  29. 29.
    M. Fujimoto and M. Watanabe,J. Mater. Sci., 20, 3683 (1985).CrossRefGoogle Scholar
  30. 30.
    N.-H. Chan, R.K. Sharma, and D.M. Smyth,J. Electrochem. Soc., 128, 1762 (1981).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan
  2. 2.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations