Journal of Electroceramics

, Volume 13, Issue 1–3, pp 829–837 | Cite as

Effect of B2O3 Nano-Coating on the Sintering Behaviors and Electrical Microwave Properties of Ba(Nd2 − xSm x )Ti4O12 Ceramics



Ba(Nd0.8Sm0.2)2Ti4O12 ceramics prepared by conventional solid-state sintering have a dielectric constant of about 80 and a nearly zero temperature coefficient of resonant frequency; however, the sintering temperature is above 1350_∘C. Doping with B2O3 (up to 5 wt%) promotes the densification and dielectric properties of BNST ceramics. It is found that coating BNST powder with thin B2O3 layer of about 180 nm reduces the sintering temperature to below 1020_∘C. The effects of B2O3 nano-coating on the dielectric microwave properties and the microstructures of BNST ceramics are investigated. Ninety-six percent of theoretical densities is obtained for specimens coated with 2 wt% B2O3 sintered at 960_∘C and the samples exhibit significant (002) preferred orientation and columnar structure.


oxide microwave dielectric properties ceramics liquid phase sintering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.J. Golonka, K.J. Wolter, A. Dziedzic, J. Kita, and L. Rebenklau, 24th International Spring Seminar on Electronics Technology (IEEE, Romania, 2001), p. 73.Google Scholar
  2. S. Jerry Fiedziuszko, Ian C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, and K. Wakino, IEEE Trans. Microwave Theory Tech., 50, 706 (2002).Google Scholar
  3. K. Wakino, K. Minai, and H. Tamura, J. Am. Ceram. Soc., 67, 278 (1984).Google Scholar
  4. D. Kolar, S. Gaberscek, Z. Stadler, and D. Suvorov, Ferroelectrics, 27, 269 (1980).Google Scholar
  5. P. Laffez, G. Desgardin, and B. Raveau, J. Mater. Sci., 27, 5229 (1992).Google Scholar
  6. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R. E. Newnham, J. Am. Ceram. Soc., 77, 1909 (1994).Google Scholar
  7. V. Tolmer and G. Desquardin, J. Am. Ceram. Soc., 80, 1981 (1997).Google Scholar
  8. B.W. Hakki and P.D. Coleman, IRE Transactions on Microwave Theory and Techniques, 8, 402 (1960).Google Scholar
  9. B.N. Roy, Crystal Growth from Melts (John Wiley & Sons, Inc., 1992), p. 304.Google Scholar
  10. Randall M. German, Sintering Theory and Practice (John Wiley & Sons, Inc., 1996), p. 225.Google Scholar
  11. X.M. Chen, Y. Suzuki, and N. Sato, J. Mat. Sci.: Materials in Electrics, 6, 10 (1995).Google Scholar
  12. L.C. Chang, B.S. Chiou, and W.H. Lee, J. Mat. Sci.: Materials in Electrics, 15, 153 (2004).Google Scholar
  13. R.D. Shannon and C.T. Prewitt, Acta Cryst., B25, 925 (1969).Google Scholar
  14. A. Maljuk, S. Watauchi, I. Tanaha, and H.K. Kojima, Journal of Crystal Growth, 212, 138 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Electronics Engineering and Institute of ElectronicsNational Chiao Tung UniversityHsinchuRepublic of China
  2. 2.Department of Electronics Engineering and Institute of ElectronicsNational Chiao Tung UniversityHsinchuTaiwanRepublic of China

Personalised recommendations