Advertisement

Journal of Electroceramics

, Volume 13, Issue 1–3, pp 637–644 | Cite as

Impedance Spectroscopy on Solids: The Limits of Serial Equivalent Circuit Models

  • J. Fleig
Article

Abstract

Impedance spectroscopic data obtained on solids are often interpreted in terms of serial equivalent circuit models. In these models each relaxation process in a spectrum is usually related to exactly one transport or reaction process, i.e. to one sample region (e.g. bulk, grain boundary, electrode) or reaction step. These quasi-one-dimensional, serial models implicitly assume frequency-independent current lines. In this contribution it is shown by finite element calculations that in real systems current lines are often frequency-dependent and that the current passes different sample regions at different frequencies. Several effects such as additional semicircles in the complex impedance plane or non-ideal impedance arcs result from frequency-dependent current lines and cannot be understood in terms of serial (quasi-one-dimensional) equivalent circuit models. In particular, it is discussed that (a) one and the same transport process can be reflected in two or even more impedance arcs and (b) that an arc in the impedance plane can depend on more than one transport process (e.g. charge transport in the bulk and across grain boundaries) even if the dielectric relaxation times of the corresponding sample regions (e.g. bulk and grain boundary) are distinctly different.

Keywords

impedance spectroscopy grain boundary electrode relaxation process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bonanos, B. C. H. Steele, E. P. Butler in Impedance Spectroscopy, Editor: J. R. Macdonald, John Wiley and Sons, New York, p. 191 (1987).Google Scholar
  2. J. Fleig and J. Maier, 1999, J. Am. Ceram. Soc., 82, 3485Google Scholar
  3. J. Maier, 1986, Ber. Bunsenges. Phys. Chem., 90, 26Google Scholar
  4. J. Fleig, P. Pham, P. Sztulzaft, and J. Maier, Solid State Ionics 113-115, 739 (1998).Google Scholar
  5. J. Fleig and J. Maier, 1997 J. Electroceramics, 1, 73Google Scholar
  6. J. Fleig and J. Maier, J. Europ. Ceram. Soc. 19(1999) 693.Google Scholar
  7. J. Fleig, Solid State Ionics 131,117 (2000).Google Scholar
  8. J. Fleig and J. Maier 1996, Electrochim. Acta 41, 1003Google Scholar
  9. J. Fleig and J. Maier, 1996, Solid State Ionics, 85, 17Google Scholar
  10. J. Fleig and J. Maier, J. Electrochem. Soc. 144, L302 (1997).Google Scholar
  11. F. Greuter and G. Blatter, 1990, Semicond. Sci. Tech., 5, 111Google Scholar
  12. M. G. Norton and C. B.Carter in Materials Interfaces, Editor: D. Wolf and S.Yip Chapman & Hall, London, p. 151 (1992).Google Scholar
  13. E. Olsson and G. L. Dunlop, 1989, J. Appl. Phys., 66, 3666Google Scholar
  14. M. A. Gülgün, V. Putlayev, and M. Rühle, 1999, J. Am. Ceram. Soc., 82, 1849Google Scholar
  15. I. Denk, J. Claus, J. Maier, 1997, J. Electrochem. Soc., 144, 3526Google Scholar
  16. J.E. Bauerle, J. Phys. Chem. Solids, 30, 2657 (1969).Google Scholar
  17. M. Kleitz, H. Bernard, E. Fernandez and E. Schouler, Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, Edited by A.H. Heuer und L.W. Hobbs, American Ceramic Society, Washington, D.C., pp.310, (1981).Google Scholar
  18. M. Kleitz, L. Dessemond, M. C. Steil, 1995, Solid State Ionics, 75, 107Google Scholar
  19. M. C. Steil, F. Thevenot, M. Kleitz, 1997, J. Electrochem. Soc., 144, 390Google Scholar
  20. L. C. DeJonghe, 1979, J. Mat. Sci., 14, 33Google Scholar
  21. P. G. Bruce and A. R., West, 1983, J. Electrochem. Soc., 130, 662Google Scholar
  22. J. Fleig and J. Maier, Solid Oxide Fuel Cells V, Editors: U. Stimming, S. C. Singhal, H. Tagawa, and W. Lehnert, PV 97-40, The Electrochem. Soc., Pennington, NJ, p.1374 (1997).Google Scholar
  23. J.-H. Hwang, K. S. Kirkpatrick, T. O. Mason, E. J. Garboczi, 1997, Solid State Ionics, 98, 93Google Scholar
  24. E. J. Abram, D. C. Sinclair, A. R. West, 2001, J. Electroceramics, 7, 179Google Scholar
  25. E. Wanzenberg, F. Tietz, D. Kek, P. Panjan, and D. Stöver, Solid State Ionicsin press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Fleig
    • 1
  1. 1.Max-Planck-Institute for Solid State ResearchStuttgartGermany

Personalised recommendations