Journal of Electroceramics

, Volume 13, Issue 1–3, pp 573–577 | Cite as

Microwave Sintering of Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives

  • Cheng-Sao Chen
  • Chen-Chia Chou
  • Wei-Chun Yang
  • I-Nan Lin


In this paper, we systematically investigated the effect of microwave sintering parameters on the characteristics of BaTiO3 capacitor materials co-doped with Y2O3/MgO species. It is observed that the granular structure of the materials is relatively insensitive to the sintering temperature and soaking time such that the BaTiO3 capacitor materials possessing X7R dielectric constant-temperature (K-T) characteristics can be obtained in a wide range of sintering conditions. TEM examinations reveal that the detailed microstructure of these materials is extremely complicated. The unique K-T properties of these materials are ascribed to the duplex structure of the samples, viz. fine grains of paraelectric phase and large grains of ferroelectric phase.


microwave sintering base-metal-electroded capacitor X7R-type capacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. Sakabe, T. Takagi, and K. Wakino, J. Am. Ceram. Soc., 69, 103 (1986).Google Scholar
  2. S. Sato, Y. Nakano, and A. Sato, Jpn. J. Appl. Phys., 9B, 6016 (1996).Google Scholar
  3. H. Shizuno, S. Kusumi, and H. Saito, Jpn. J. Appl. Phys., 9B, 4380 (1993).Google Scholar
  4. C.J. Peng and H.Y. Lu, J. Am. Ceram. Soc., 71, C44 (1988).Google Scholar
  5. M. Drofenik, J. Am. Ceram. Soc., 70, 311 (1987).Google Scholar
  6. T.H. Song and C.A. Randall, J. Electroceramics, 10(1), 39 (2003).Google Scholar
  7. M. Kahn, J. Am. Ceram. Soc., 54, 455 (1971).Google Scholar
  8. S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, and T. Nomura, J. Am. Ceram. Soc., 74, 2739 (1991).Google Scholar
  9. I. Burn, Ceram. Bulletin, 57, 600 (1978).Google Scholar
  10. W.C. Yang, C.T. Hu, and I.N. Lin, Ferroelectrics, 270, 1321 (2002).Google Scholar
  11. N.M. Molokhia, M.A. Issa, and S.A. Nasser, J. Am. Ceram. Soc., 67, 289 (1984).Google Scholar
  12. Y. Park and H.G. Kim, J. Am. Ceram. Soc., 80, 106 (1997).Google Scholar
  13. D. Hennings and G. Rosenstein, J. Am. Ceram. Soc., 67, 249 (1984).Google Scholar
  14. H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., 42, 1 (2003).Google Scholar
  15. H. Saito, H. Chazono, H. Kishi, and N. Yamaoka, Jpn. J. Appl. Phys., 9B, 2307 (1991).Google Scholar
  16. Y. Mizuno, Y. Okino, N. Kohzu, H. Chazono, and H. Kishi, Jpn. J. Appl. Phys., 9B, 5227 (1998).Google Scholar
  17. W.C. Yang, C.T. Hu, and I.N. Lin, J. Euro. Ceram. Soc., in press (2003).Google Scholar
  18. W.H. Sutton, Am. Ceram. Soc. Bull., 68, 376 (1989).Google Scholar
  19. Y.Y. Lin, C.T. Hu, H.Y. Chang, and I.N. Lin, J. Appl. Phys., 83(3), 1321 (1998).Google Scholar
  20. P.H. Chen, C.C. Chou, H.F. Cheng, and I.N. Lin, Ferroelectrics, 241, 1669 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Cheng-Sao Chen
    • 1
    • 2
  • Chen-Chia Chou
    • 1
  • Wei-Chun Yang
    • 3
  • I-Nan Lin
    • 3
    • 4
  1. 1.Department of Mechanical EngineeringNational Taiwan University of Science and TechnologyTaipeiRepublic of China
  2. 2.Department of Mechanical EngineeringHwa-Hsia College of Technology and CommerceChunghoRepublic of China
  3. 3.Materials Science CenterNational Tsing-Hua UniversityHsin-ChuRepublic of China
  4. 4.Department of PhysicsTamkang UniversityTamsuiRepublic of China

Personalised recommendations