Journal of Electroceramics

, Volume 13, Issue 1–3, pp 385–392 | Cite as

Lead Free Piezoelectric Materials

  • M. Demartin Maeder
  • D. Damjanovic
  • N. Setter


Lead oxide based ferroelectrics, represented by lead zirconate titanate (Pb(Zr, Ti)O3) or PZT) are the most widely used materials for piezoelectric actuators, sensors and transducers due to their excellent piezoelectric properties. Considering lead toxicity, there is interest in developing piezoelectric materials that are biocompatible and environmentally friendlier. The low density of non-lead based materials can also be an advantage in transducers for underwater and medical imaging due to expected lower acoustical impedance. Another impetus for seeking alternative to lead based compositions is the need for piezoelectric materials for operation at high temperatures. Several classes of materials are now being reconsidered as potentially attractive alternatives to PZT for special applications. The potassium niobate family, KNbO3, exhibits low dielectric constants, large thickness coupling coefficient along certain non-polar directions, and low density, all of which have advantages for high frequency transducer applications. Several compositions belonging to bismuth titanate family, Bi4Ti3O12, such as SrTi4Bi4O15, are promising candidates for high temperature applications. Lead free materials alone (eg. (Na0.5Bi0.5)TiO3) or in solution with PT (BiScO3 – PbTiO3) are also potentially interesting as they combine high piezoelectric activity and, in some cases, relatively high T c . For these families of piezoelectric materials, the processing and piezoelectric response under different conditions of pressure, frequency, and temperature are presently much less understood than for the classical lead containing systems. In this presentation we review and discuss piezoelectric properties of selected lead free compositions (principally for members of the potassium niobate family and bismuth titanate layered compounds) in relation to structural and microstructural features as well as extrinsic contributions (domain walls displacement, conductivity) to their electromechanical properties. It is shown that it is possible to obtain remarkably stable piezoelectric response in some compositions, while others exhibit strong dependence of piezoelectric properties on driving field and frequency. Origins of these different behaviours are discussed.


lead free piezoelectric potassium niobate bismuth titanate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971).Google Scholar
  2. J.W. Waanders, Piezoelectric Ceramics-Properties and Applications (Philips Components, Eindhoven, 1991).Google Scholar
  3. A. Zomorrodian, N.J. Wu S. Wilczac C. Colbert A. Ignatiev, in La-doped PbZrTiO3(PLZT) Thin Film Optical Detector (TOD) for Retinal Implantation—A “Bionic” Eye, 2002.Google Scholar
  4. M. Kosec, private communication.Google Scholar
  5. D. Damjanovic, Current Opinion in Solid State & Materials Science, 3, 469 (1998).Google Scholar
  6. R.C. Turner, P.A. Fuierer, R.E. Nenwham, and T.R. Shrout, Applied Acoustics, 41, 299 (1994).Google Scholar
  7. G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky, Phys. Rev., 93, 672 (1954).Google Scholar
  8. K. Nakamura, and M. Oshiki, Appl. Phys. Lett., 71, 3202 (1997).Google Scholar
  9. K. Nakamura and Y. Kawamura, in Proceedings of the 1999 IEEE Ultrasonics Symposium (1999), p. 1013.Google Scholar
  10. K. Nakamura, and Y. Kawamura, IEEE Transactions UFFC, 47, 750 (2000).Google Scholar
  11. K. Nakamura, T. Tokiwa, and Y. Kawamura, Journal of Applied Physics, 91, 9272 (2002).Google Scholar
  12. D. Damjanovic, F. Brem, and N. Setter, Appl. Phys. Lett., 80, 652 (2002).Google Scholar
  13. E. Wiesendanger, Ferroelectrics, 6, 263 (1974).Google Scholar
  14. F. Jona and G. Shirane, Ferroelectric Crystals, (Pergamon, New York, 1962).Google Scholar
  15. M. Kosec and D. Kolar, Mat. Res. Bull., 10, 335 (1975).Google Scholar
  16. A. Reisman and F. Holtzberg, J. Am. Chem. Soc., 77, 2115 (1955).Google Scholar
  17. R.E. Jaeger and L. Egerton, J. Am. Ceram. Soc., 45, 209 (1962).Google Scholar
  18. G.H. Heartling, J. Am. Ceram. Soc., 50, 329 (1967).Google Scholar
  19. N.M. Kari, T.A. Ritter, S.E. Park, T.R. Shrout, K.K. Shung, in Investigation of Potassium Niobate as an Ultrasonic Transducer Material (Puertorico, 2000).Google Scholar
  20. B. Aurivillus, Ark. Kemi, 1, 499 (1949).Google Scholar
  21. R.E. Newnham, R.W. Wolfe, and J.F. Dorrian, Mater. Res. Bull., 6, 1029 (1971).Google Scholar
  22. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991).Google Scholar
  23. T. Takenaka and K. Sakata, Jpn. J. Appl. Phys., 19, (1980).Google Scholar
  24. T. Takenaka and K. Sakata, Ferroelectrics, 38, 769 (1981).Google Scholar
  25. T. Takenaka and K. Sakata, Jpn. J. Appl. Phys., 20, 161 (1981).Google Scholar
  26. T. Takenaka and K. Sakata, Jpn. J. Appl. Phys., 20, 189 (1981).Google Scholar
  27. T. Takenaka, K. Sakata, and K. Toda, Japan. J. Appl. Phys., 24, 730 (1985).Google Scholar
  28. T. Takenaka, K. Shoji, K. Sakata, in 20th Japan Congress on Materials Research (Kyoto, 1976).Google Scholar
  29. T. Takenaka, K. Shoji H. Takai, K. Sakata, in Ferroelectric and Dielectric Properties of Press Forged Bi4Ti3 O12Ceramics (Tokyo, 1975).Google Scholar
  30. E.C. Subbarao, J. Phys. Chem. Solids., 23, 665 (1962).Google Scholar
  31. V.M. Gurevich, in Electric Conductivity of Ferroelectrics, edited by T. f. R. b. t. I. P. f. S. Translations (Jerusalem, 1971).Google Scholar
  32. S.S. Lopatin, T.G. Lupeiko, T.L. Vasil’tsva, N.I. Basenko, and I.M. Berlizev, Inorg. Mater., 24, 1328 (1988).Google Scholar
  33. H.S. Shulman, Ph. D. Thesis, Swiss Federal Institute of Technology - EPFL, 1997.Google Scholar
  34. H.S. Shulman, M. Testorf, D. Damjanovic, and N. Setter, J. Am. Ceram. Soc., 79, 3124 (1996).Google Scholar
  35. S.H. Hong, J.A. Horn, S.T.-M. Kinstry, and G.L. Messing, Journal of Materials Science Letters, 19, 1661 (2000).Google Scholar
  36. L. Sagalowicz, F. Chu, P. Duran Martin, and D. Damjanovic, J. Appl. Phys., 88, 7258 (2000).Google Scholar
  37. F. Chu, D. Damjanovic, N. Setter, in An Investigation of Dielectric and Piezoelectric Properties of Bi4Ti3 O12 + Bi3TiNbO9 Ceramics, 1995 (Gruppo Editoriale Feanza Editrice, Riccione), p. 197.Google Scholar
  38. F. Chu, D. Damjanovic, O. Steiner, and N. Setter, J. Am. Ceram. Soc., 78, 3142 (1995).Google Scholar
  39. I.M. Reaney and D. Damjanovic, J. Appl. Phys., 80, 4223 (1996).Google Scholar
  40. S.E. Cummins and L.E. Cross, J. Appl. Phys., 39, 2268 (1968).Google Scholar
  41. D. Damjanovic, M. Demartin Maeder, C. Voisard, and N. Setter, J. Appl. Phys. (2001) (submitted).Google Scholar
  42. T. Takeuchi, T. Tani, and Y. Saito, Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes and Review Papers, 38, 5553 (1999).Google Scholar
  43. T. Takeuchi, T. Tani, and Y. Saito, Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes and Review Papers, 39, 5577 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Demartin Maeder
    • 1
  • D. Damjanovic
    • 1
  • N. Setter
    • 1
  1. 1.Ceramics LaboratorySwiss Federal Institute of Technology – EPFLLausanneSwitzerland

Personalised recommendations