Journal of Electroceramics

, Volume 13, Issue 1–3, pp 321–326 | Cite as

Characterization of Crystalline Carbon Nitride Films Deposited on Si and Si3N4/Si Substrate by RF Magnetron Sputtering System with DC Bias

  • J. G. Lee
  • S. P. Lee


Crystalline carbon nitride films were deposited on Si and Si3N4/Si substrate by reactive RF magnetron sputtering system with chamber heating and DC bias. The deposited films showed α -C3N4, β -C3N4 and lonsdaleite phase by XRD, XPS and FTIR. The crystalline morphology was found to gave a hexagonal structure, which has theoretical unit cell of carbon nitride observed in SEM photographs. When nitrogen gas ratio is 70%, RF power is 300 W and DC bias is –80 V, the growth rate of carbon nitride film on Si3N4 substrate is 2.2 μm/hr, which is a relatively high growth rate compared with those in previously reported papers. The deposited films have thermally stable properties in the range of 650_∘C to 1,400_∘C.


carbon nitride RF magnetron sputter crystalline morphology growth rate/ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.L. Cohen, Phys. Rev.B, 32, 7988 (1985).Google Scholar
  2. A.Y. Liu and M.L. Cohen, Science, 245, 841 (1989).Google Scholar
  3. A.Y. Liu and M.L. Cohen in Atomic scale Calculations of Structure in Materials, edited by M.A. Schluter and M.S. Daw (Materials Research Society, Pittsburgh, 1990).Google Scholar
  4. A.Y. Liu and M.L. Cohen, Phys. Rev.B, 41, 10727 (1990).CrossRefGoogle Scholar
  5. J.L. Corkill and M.L. Cohen, Physical ReviewB, 48, 17622 (1993).Google Scholar
  6. K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, and I.C. Wu, Phys. Rev.B, 49, 5034 (1994).Google Scholar
  7. S.P. Lee and J.B. Kang, Microchemical Journal, 70, 239 (2001).Google Scholar
  8. H. Han and B.J. Feldman, Solid State Commun., 65, 921 (1988).CrossRefGoogle Scholar
  9. D.W. Wu, W. Fan, H.X. Guo, M.B. He, X.Q. Meng, and X.J. Fan, Solid State Commun., 103, 193 (1997).Google Scholar
  10. P. Gonzalez, R. Soto, E.G. Parada, X. Redondas, S. Chiussi, J. Serra, J. Pou, B. Leon, and M. Perez-Amor, Appl. Surf. Sci., 109–110, 380 (1997).Google Scholar
  11. C.W. Ong, X.-A. Zhao, Y.C. Tsang, C.L. Choy, and P.W. Chan, Thin Solid Films, 280, 1 (1996).CrossRefGoogle Scholar
  12. K.J. Boyd, D. Marton, S.S. Todorov, A.H. Al-Bayati, J. Kulik, R.A. Zuhr, and J. W. Rabalais, J. Vac. Sci. Technol., A 13, 2110 (1995).Google Scholar
  13. C.M. Sung and M. Sung, Materials Chemistry and Physics, 43, 1 (1996).Google Scholar
  14. D.M. Teter and R.J. Hernley, Science, 271, 56 (1996).Google Scholar
  15. W. Zheng, T.Ding, I.Ivanov and J.-E. Sundgren, J. Mater. Sci. Technol., 13, 154 (1997).Google Scholar
  16. R.C. DeVries, Mater. Res. Innovations, 1, 161 (1997).Google Scholar
  17. Y.A. Li, S. Su, H.S. Li, and W.Y. Luo, J. Mater. Sci. Lett., 17, 31 (1998).Google Scholar
  18. J.P. Riviere, D. Texier, J. Delafond, M. Jaonen, E.L. Mathe, and J. Chanmont, Materials Letters, 22, 115 (1995).Google Scholar
  19. Y. Zhang and Y. Gu, Philosophical Magazine Letters, 81, 505 (2001).Google Scholar
  20. C. Popov, M.F. Plass, R. Kassing, and W. Kulisch, Thin Solid Films, 333, 406 (1999).Google Scholar
  21. X.C. Xiao, Y.W. Li, W.H. Jiang, L.X. Song, and X.F. Hu, J. Phys. Chem. Solids 61, 915 (2000).Google Scholar
  22. C. Jama, V. Rousseau, O. Dessaux, and P. Goudmand, Thin Solid Films, 302, 58 (1997).Google Scholar
  23. R. Alexandrescu, F. Huisken, A. Crunteanu, S. Petcu, S. Cojocaru, S. Cireasa, and I. Morjan, Appl. Phys. A, 65, 207 (1997).Google Scholar
  24. M. Kohzaki, A. Matsumuro, T. Hayashi, M. Muramatsu, K. Yamaguch, Thin Solid Films, 308/309, 239 (1997).Google Scholar
  25. H.W. song, F.Z. Cui, X.M. He, W.Z. Li, and H.D. Li, J. Phys. Conden. Matt., 6, 6125 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringKyungnam UniversitySouth Korea

Personalised recommendations