Journal of Electroceramics

, Volume 13, Issue 1–3, pp 209–214 | Cite as

Characterization of Hydrothermally Synthesized PLZT for Pyroelectric Applications

  • S. Kongtaweelert
  • P. Anuragudom
  • S. Nualpralaksana
  • R. B. Heimann
  • S. Phanichphant


PLZT fine powders have been synthesized by a hydrothermal process using lead acetate, lanthanum acetate, zirconium n-propoxide and titanium isopropoxide as starting materials. The synthesis was performed at 200°C for 8, 12 and 24 h. 4 M KOH was used as a mineralizer to adjust the pH to an optimum value for the mixed precursor solution. After hydrothermal treatment the solid portion was separated out, washed and dried at 100°C for 12 h, where PLZT fine powders were obtained. PLZT powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The PLZT powders were pressed and sintered to obtain high density ceramics, which then were investigated by XRD and SEM. The dielectric properties of the ceramics were investigated by measurements of dielectric constant and dielectric loss as a function of temperature at a fixed frequency.


PLZT hydrothermal pyroelectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.D. Annis and G. Simpson, Infrared Phys., 14, 199 (1974).Google Scholar
  2. H.P. Beerman, Infrared Phys., 15, 225 (1975).Google Scholar
  3. A.H. Lozinski, Sensors and Actuators A, 41/42, 535 (1994).Google Scholar
  4. S. Leppavuori, A.H. Lozinski, and A. Uusimaki, Sensors and Actuators A, 46/47, 39 (1995).Google Scholar
  5. A.H. Lozinski, F. Wang, A. Uusimaki, and S. Leppavuori, Sensors and Actuators A, 68, 290 (1998).Google Scholar
  6. G. Cicco, De B. Morten, D. Dalmonego, and M. Prudenziati, Sensors and Actuators A, 76, 409 (1999).Google Scholar
  7. B.V. Hiremath, A.I. Kingon, and J.V. Biggers, J. Am. Ceram. Soc., 66, 790 (1983).Google Scholar
  8. J.R. Thomson, Bull. Amer. Ceram. Soc., 53, 421 (1974).Google Scholar
  9. M.A. Akbas and W.E. Lee, Brit. Ceram. Trans., 95, 49 (1996).Google Scholar
  10. H. Yamamura, M. Tanada, H. Haneda, S. Shiraska, and Y. Mariyashi, Ceram. Int., 11, 23 (1985).Google Scholar
  11. M.A. Akabas and W.E. Lee, Brit. Ceram. Proc., 52, 139 (1994).Google Scholar
  12. M.A. Akabas and W.E. Lee, J. Eur. Ceram. Soc., 15, 57 (1995).Google Scholar
  13. S.R. Shannigrahi and R.N.P. Choudhary, J. Electroceram., 5, 201 (2000).Google Scholar
  14. J. Moon, J.A. Kerchner, H. Krarup, and J.H. Adair, J. Mater. Res., 14, 425 (1999).Google Scholar
  15. S. Nualpralaksana, S. Phanichphant, M. Hengst, and R.B. Heimann, Ceram. Forum Int. (dfi)/Ber DKG, 78, E34 (2001).Google Scholar
  16. M. Murata, K. Wakino, K. Tanaka, and Y. Hamakawa, Mater. Res. Bull., 11, 323 (1976).Google Scholar
  17. K.K. Deb, Mater. Lett., 5, 222 (1987).Google Scholar
  18. Y. Yoshikawa, K. Tsuzuki, T. Kobayashi, and A. Takagi, J. Mater. Sci., 23, 2729 (1988).Google Scholar
  19. S.R. Shannigrahi, R.N.P. Choudhary, and H.N. Acharya, Mater. Chem. Phys., 58, 204 (1999).Google Scholar
  20. R.N.P. Choudhary and J. Mal, J. Mater. Sci. Eng. B, B90, 1 (2002).Google Scholar
  21. C. Prakash and O.P. Thakur, Mater. Lett., 57, 2310 (2003).Google Scholar
  22. G. Heartling and C. Land, J. Am. Ceram. Soc., 55, 1 (1972).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. Kongtaweelert
    • 1
  • P. Anuragudom
    • 2
  • S. Nualpralaksana
    • 3
  • R. B. Heimann
    • 4
  • S. Phanichphant
    • 2
  1. 1.Department of PhysicsFaculty of Science, Chiang Mai UniversityChiang MaiThailand
  2. 2.Department of ChemistryFaculty of Science, Chiang Mai UniversityChiang MaiThailand
  3. 3.Chemistry ProgramFaculty of Science and Technology, Rajabhat Institute Nakhon PathomNakhon PathomThailand
  4. 4.Department of MineralogyFreiberg University of Mining and TechnologyFreibergGermany

Personalised recommendations