Advertisement

Journal of Computational Neuroscience

, Volume 44, Issue 3, pp 297–312 | Cite as

An integrate-and-fire model to generate spike trains with long-range dependence

  • Alexandre Richard
  • Patricio Orio
  • Etienne Tanré
Article
  • 204 Downloads

Abstract

Long-range dependence (LRD) has been observed in a variety of phenomena in nature, and for several years also in the spiking activity of neurons. Often, this is interpreted as originating from a non-Markovian system. Here we show that a purely Markovian integrate-and-fire (IF) model, with a noisy slow adaptation term, can generate interspike intervals (ISIs) that appear as having LRD. However a proper analysis shows that this is not the case asymptotically. For comparison, we also consider a new model of individual IF neuron with fractional (non-Markovian) noise. The correlations of its spike trains are studied and proven to have LRD, unlike classical IF models. On the other hand, to correctly measure long-range dependence, it is usually necessary to know if the data are stationary. Thus, a methodology to evaluate stationarity of the ISIs is presented and applied to the various IF models. We explain that Markovian IF models may seem to have LRD because of non-stationarities.

Keywords

Interspike interval statistics Stochastic integrate-and-fire model Long-range dependence Stationarity 

Notes

Acknowledgements

Part of this work was carried out while A.R. was a postdoc at Inria Sophia-Antipolis and at Ecole Polytechnique (the support from ERC 321111 Rofirm is gratefully acknowledged). A.R. and E.T. acknowledge the support from the ECOS-Sud Program Chili-France C15E05 and from the European Union’s Horizon 2020 Framework Program for Research and Innovation under Grant Agreement No. 720270 (Human Brain Project SGA1). P.O acknowledges the support from the Advanced Center for Electrical and Electronic Engineering (Basal Funding FB0008, Conicyt) and the project P09-022-F from the Millennium Scientific Initiative of the Chilean Ministry of Economy, Development, and Tourism.

We thank the reviewers for their remarks which helped to improve significantly the quality of this paper.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abry, P., Gonçalvès, P., Flandrin, P. (1995). Wavelets, spectrum analysis and 1/f processes, (pp. 15–29). New York: Springer.Google Scholar
  2. Baddeley, R., Abbott, L.F., Booth, M.C., Sengpiel, F., Freeman, T., Wakeman, E.A., Rolls, E.T. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes, (Vol. 264 pp. 1775–1783).Google Scholar
  3. Bair, W., Koch, C., Newsome, W., Britten, K. (1994). Power spectrum analysis of bursting cells in area mt in the behaving monkey. Journal of Neuroscience, 14(5), 2870–2892.CrossRefPubMedGoogle Scholar
  4. Beran, J., Feng, Y., Ghosh, S., Kulik, R. (2013). Long-memory processes. Heidelberg: Springer. Probabilistic properties and statistical methods.CrossRefGoogle Scholar
  5. Bhattacharya, R.N., Gupta, V.K., Waymire, E. (1983). The Hurst effect under trends. Journal of Applied Probability, 20(3), 649–662.CrossRefGoogle Scholar
  6. Bhattacharya, J., Edwards, J., Mamelak, A., Schuman, E. (2005). Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans. Neuroscience, 131(2), 547–555.CrossRefPubMedGoogle Scholar
  7. Brunel, N., & Sergi, S. (1998). Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. Journal of Theoretical Biology, 195(1), 87–95.CrossRefPubMedGoogle Scholar
  8. Cardinali, A., & Nason, G.P. (2010). Costationarity of locally stationary time series. Journal of Time Series Econometrics, 2(2), Article 1.Google Scholar
  9. Cardinali, A., & Nason, G.P. (2018). Practical powerful wavelet packet tests for second-order stationarity. Applied and Computational Harmonic Analysis 44(3), 558–583.Google Scholar
  10. Carmona, P., Coutin, L., Montseny, G. (2000). Approximation of some Gaussian processes. Statistical Inference for Stochastic Processes, 3(1-2), 161–171. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998).CrossRefGoogle Scholar
  11. Chacron, M.J., Pakdaman, K., Longtin, A. (2003). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15(2), 253–278.CrossRefPubMedGoogle Scholar
  12. Churilla, A.M., Gottschalke, W.A., Liebovitch, L.S., Selector, L.Y., Todorov, A.T., Yeandle, S. (1995). Membrane potential fluctuations of human t-lymphocytes have fractal characteristics of fractional brownian motion. Annals of Biomedical Engineering, 24(1), 99–108.CrossRefGoogle Scholar
  13. Coeurjolly, J.-F. (2000). Simulation and identification of the fractional brownian motion: a bibliographical and comparative study. Journal of Statistical Software, 5(1), 1–53.Google Scholar
  14. de Oliveira, R.C., Barbosa, C., Consoni, L., Rodrigues, A., Varanda, W., Nogueira, R. (2006). Long-term correlation in single calcium-activated potassium channel kinetics. Physica A: Statistical Mechanics and its Applications, 364, 13–22.CrossRefGoogle Scholar
  15. Decreusefond, L., & Nualart, D. (2008). Hitting times for Gaussian processes. The Annals of Probability, 36 (1), 319–330.CrossRefGoogle Scholar
  16. Delorme, M., & Wiese, K.J. (2015). Maximum of a fractional Brownian motion: analytic results from perturbation theory. Physical Review Letters, 115(21), 210601, 5.CrossRefGoogle Scholar
  17. Destexhe, A., Rudolph, M., Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4(9), 739–751.CrossRefPubMedGoogle Scholar
  18. Doukhan, P. (1994). Mixing, properties and examples, volume 85 of lecture notes in statistics. New York: Springer.Google Scholar
  19. Drew, P.J., & Abbott, L.F. (2006). Models and properties of power-law adaptation in neural systems. Journal of Neurophysiology, 96(2), 826–833.CrossRefPubMedGoogle Scholar
  20. Fairhall, A.L., Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792.CrossRefPubMedGoogle Scholar
  21. Gerstein, G.L., & Mandelbrot, B. (1964). Random walk models for the spike activity of a single neuron. Biophysical Journal, 4(1), 41–68.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hammond, A., & Sheffield, S. (2013). Power law Pólya’s urn and fractional Brownian motion. Probability Theory and Related Fields, 157(3–4), 691–719.CrossRefGoogle Scholar
  23. Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jackson, B.S. (2004). Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Neural Computation, 16(10), 2125–2195.CrossRefPubMedGoogle Scholar
  25. Kwiatkowski, D., Phillips, P.C., Schmidt, P., Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1), 159–178.CrossRefGoogle Scholar
  26. Lewis, C.D., Gebber, G.L., Larsen, P.D., Barman, S.M. (2001). Long-term correlations in the spike trains of medullary sympathetic neurons. Journal of Neurophysiology, 85(4), 1614–1622.CrossRefPubMedGoogle Scholar
  27. Lindner, B. (2004). Interspike interval statistics of neurons driven by colored noise. Physical Review E, 69, 022901.CrossRefGoogle Scholar
  28. Lowen, S.B., Cash, S.S., Poo, M.-m., Teich, M.C. (1997). Quantal neurotransmitter secretion rate exhibits fractal behavior. Journal of Neuroscience, 17(15), 5666–5677.CrossRefPubMedGoogle Scholar
  29. Lowen, S.B., Ozaki, T., Kaplan, E., Saleh, B.E., Teich, M.C. (2001). Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods, 24(4), 377–394.CrossRefPubMedGoogle Scholar
  30. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L. (2008). Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience, 11(11), 1335–1342.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mandelbrot, B.B. (1965). Une classe de processus stochastiques homothétiques à soi; application à la loi climatologique de H. E. Hurst. C. R. Acad. Sci. Paris, 260, 3274–3277.Google Scholar
  32. Mandelbrot, B.B. (1975). Limit theorems on the self-normalized range for weakly and strongly dependent processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31, 271–285.CrossRefGoogle Scholar
  33. Mandelbrot, B.B., & Wallis, J.R. (1968). Noah, Joseph, and operational hydrology. Water Resources Research, 4(5), 909–918.CrossRefGoogle Scholar
  34. Mandelbrot, B.B., & Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.CrossRefGoogle Scholar
  35. Metzler, R., & Klafter, J. (2004). The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics. A. Mathematical and General, 37 (31), R161–R208.CrossRefGoogle Scholar
  36. Middleton, J.W., Chacron, M.J., Lindner, B., Longtin, A. (2003). Firing statistics of a neuron model driven by long-range correlated noise. Physical Review E, 68, 021920.CrossRefGoogle Scholar
  37. Nason, G. (2013). A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 75(5), 879–904.CrossRefGoogle Scholar
  38. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simon, M., Stanley, H.E. (1992). Long-range correlations in nucleotide sequences. Nature, 356, 168–170.CrossRefPubMedGoogle Scholar
  39. Peng, C.-K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Physical Review Letters, 70, 1343–1346.CrossRefGoogle Scholar
  40. Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49, 1685–1689.CrossRefGoogle Scholar
  41. Pozzorini, C., Naud, R., Mensi, S., Gerstner, W. (2013). Temporal whitening by power-law adaptation in neocortical neurons. Nature neuroscience, 16(7), 942–948.CrossRefPubMedGoogle Scholar
  42. Priestley, M.B., & Subba Rao, T. (1969). A test for non-stationarity of time-series. Journal of the Royal Statistical Society. Series B. Methodological, 31, 140–149.Google Scholar
  43. Rangarajan, G., & Ding, M. (Eds.). (2003). Processes with long-range correlations: theory and applications, volume 621 of Lecture Notes in Physics. Berlin: Springer.Google Scholar
  44. Richard, A., & Talay, D. (2016). Hölder continuity in the Hurst parameter of functionals of Stochastic Differential Equations driven by fractional Brownian motion. arXiv:1605.03475.
  45. Sacerdote, L., & Giraudo, M.T. (2013). Stochastic integrate and fire models: a review on mathematical methods and their applications. In Stochastic biomathematical models, volume 2058 of Lecture Notes in Math. (pp. 99–148). Heidelberg: Springer.Google Scholar
  46. Samorodnitsky, G. (2016). Stochastic processes and long range dependence. Springer Series in Operations Research and Financial Engineering. Cham: Springer.CrossRefGoogle Scholar
  47. Schwalger, T., & Schimansky-Geier, L. (2008). Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times. Physical Review E, 77, 031914.CrossRefGoogle Scholar
  48. Schwalger, T., Fisch, K., Benda, J., Lindner, B. (2010). How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Computational Biology, 6(12), e1001026, 25.CrossRefGoogle Scholar
  49. Schwalger, T., Droste, F., Lindner, B. (2015). Statistical structure of neural spiking under non-Poissonian or other non-white stimulation. Journal of Computational Neuroscience, 39(1), 29–51.CrossRefPubMedGoogle Scholar
  50. Segev, R., Benveniste, M., Hulata, E., Cohen, N., Palevski, A., Kapon, E., Shapira, Y., Ben-Jacob, E. (2002). Long term behavior of lithographically prepared in vitro neuronal networks. Physical Review Letters, 88, 118102.CrossRefPubMedGoogle Scholar
  51. Sobie, C., Babul, A., de Sousa, R. (2011). Neuron dynamics in the presence of 1/f noise. Physical Review E, 83, 051912.CrossRefGoogle Scholar
  52. Sottinen, T. (2001). Fractional Brownian motion, random walks and binary market models. Finance and Stochastics, 5(3), 343–355.CrossRefGoogle Scholar
  53. Taqqu, M.S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31, 287–302.CrossRefGoogle Scholar
  54. Taqqu, M.S., Teverovsky, V., Willinger, W. (1995). Estimators for long-range dependence: an empirical study. Fractals, 03(04), 785–798.CrossRefGoogle Scholar
  55. Teich, M.C. (1992). Fractal neuronal firing patterns. In McKenna, T., Davis, J., Zornetzer, S. F. (Eds.), Single Neuron Computation, Neural Networks: Foundations to Applications (pp. 589–625). San Diego: Academic Press.Google Scholar
  56. Teich, M.C., Turcott, R.G., Siegel, R.M. (1996). Temporal correlation in cat striate-cortex neural spike trains. IEEE Engineering in Medicine and Biology Magazine, 15(5), 79–87.CrossRefGoogle Scholar
  57. Teich, M.C., Heneghan, C., Lowen, S.B., Ozaki, T., Kaplan, E. (1997). Fractal character of the neural spike train in the visual system of the cat. Journal of the Optical Society of America A, 14(3), 529–546.CrossRefGoogle Scholar
  58. Teka, W., Marinov, T.M., Santamaria, F. (2014). Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Computational Biology, 10(3), e1003526.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Weron, R. (2002). Estimating long-range dependence: finite sample properties and confidence intervals. Physica A. Statistical Mechanics and its Applications, 312(1-2), 285–299.CrossRefGoogle Scholar
  60. Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V. (1997). Self-similarity through high-variability: statistical analysis of ethernet lan traffic at the source level. IEEE/ACM Transactions on Networking, 5(1), 71–86.CrossRefGoogle Scholar
  61. Zilany, M.S., Bruce, I.C., Nelson, P.C., Carney, L.H. (2009). A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. The Journal of the Acoustical Society of America, 126(5), 390–2412.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CentraleSupélec, Université Paris-Saclay, Laboratoire MICS et Fédération CNRS - FR3487Gif-sur-YvetteFrance
  2. 2.Instituto de Neurociencia, Facultad de CienciasUniversidad de ValparaísoValparaisoChile
  3. 3.Centro Interdisciplinario de Neurociencia de ValparaísoUniversidad de ValparaísoValparaisoChile
  4. 4.Université Côte d’Azur, InriaSophia-AntipolisFrance

Personalised recommendations