Advertisement

Journal of Computational Neuroscience

, Volume 41, Issue 3, pp 295–304 | Cite as

A negative group delay model for feedback-delayed manual tracking performance

  • Henning U. Voss
  • Nigel Stepp
Article

Abstract

We propose that feedback-delayed manual tracking performance is limited by fundamental constraints imposed by the physics of negative group delay. To test this hypothesis, the results of an experiment in which subjects demonstrate both reactive and predictive dynamics are modeled by a linear system with delay-induced negative group delay. Although one of the simplest real-time predictors conceivable, this model explains key components of experimental observations. Most notably, it explains the observation that prediction time linearly increases with feedback delay, up to a certain point when tracking performance deteriorates. It also explains the transition from reactive to predictive behavior with increasing feedback delay. The model contains only one free parameter, the feedback gain, which has been fixed by comparison with one set of experimental observations for the reactive case. Our model provides quantitative predictions that can be tested in further experiments.

Keywords

Motor control Tracking Dynamical modeling Negative group delay Synchronization 

Notes

Acknowledgments

We would like to thank the reviewers for their thoughtful comments.

Compliance with ethical standards

The experiment, published in Stepp (2009), was approved by the University of Connecticut Institutional Review Board and conducted in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alexander, G. E. (1994). Basal ganglia thalamocortical circuits - their role in control of movements. Journal of Clinical Neurophysiology, 11(4), 420–431.CrossRefPubMedGoogle Scholar
  2. Baraik, A., Singh, H., & Parmananda, P. (2014). Experimental evidence of enhancement in the anticipation time by cascading. Physics Letters A, 378(20), 1356–1360.CrossRefGoogle Scholar
  3. Bariska, A. (2008). Time Machine, Anyone? https://www.dsprelated.com/blogimages/Andor Bariska/NGD/ngdblog. Pdf.
  4. Bernard, S., Belair, J., & Mackey, M. C. (2001). Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems-Series B, 1(2), 233–256.CrossRefGoogle Scholar
  5. Beuter, A., Milton, J. G., Labrie, C., Glass, L., & Gauthier, S. (1990). Delayed visual feedback and movement control in Parkinson’s disease. Experimental Neurology, 110(2), 228–235.CrossRefPubMedGoogle Scholar
  6. Blakely, J. N., Pruitt, M. W., & Corron, N. J. (2008). Time shifts and correlations in synchronized chaos. Chaos, 18(1), 013117.CrossRefPubMedGoogle Scholar
  7. Brillouin, L. (1960). Wave Propagation and Group Velocity (Pure and Applied Physics (Vol. 8)). New York: Academic Press.Google Scholar
  8. Calvo, O., Chialvo, D. R., Eguiluz, V. M., Mirasso, C., & Toral, R. (2004). Anticipated synchronization: A metaphorical linear view. Chaos, 14(1), 7–13.CrossRefPubMedGoogle Scholar
  9. Ciszak, M., Marino, F., Toral, R., & Balle, S. (2004). Dynamical mechanism of anticipating synchronization in excitable systems. Physical Review Letters, 93(11), 114102.CrossRefPubMedGoogle Scholar
  10. Craik, K. J. W. (1947). Theory of the human operator in control systems I. The operator as an engineering system. British Journal of Psychology, 38, 56–61.PubMedGoogle Scholar
  11. Dajani, H. R., & Lam, J. C. H. (2008). Prediction of pulsatile physiological signals using a negative group delay circuit. In Proceedings of the 1st WSEAS International Conference on Biomedical Electronics and Biomedical Informatics (pp. 91–96).Google Scholar
  12. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M., & Linden, S. (2006). Simultaneous negative phase and group velocity of light in a metamaterial. Science, 312(5775), 892–894.CrossRefPubMedGoogle Scholar
  13. Elkind, J. I., & Sprague, L. T. (1961). Transmission of information in simple manual control systems. IRE Transactions on Human Factors in Electronics, 2(1), 58–60.CrossRefGoogle Scholar
  14. Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.CrossRefPubMedGoogle Scholar
  15. Foulkes, A. J. M., & Miall, R. C. (2000). Adaptation to visual feedback delays in a human manual tracking task. Experimental Brain Research, 131(1), 101–110.CrossRefPubMedGoogle Scholar
  16. Garrett, C. G. B., & McCumber, D. E. (1970). Propagation of a gaussian light pulse through an anomalous dispersion medium. Physical Review A, 1(2), 305.CrossRefGoogle Scholar
  17. Gerisch, H., Staude, G., Wolf, W., & Bauch, G. (2013). A three-component model of the control error in manual tracking of continuous random signals. Human Factors, 55(5), 985–1000.CrossRefPubMedGoogle Scholar
  18. Giacomelli, G., & Politi, A. (1996). Relationship between delayed and spatially extended dynamical systems. Physical Review Letters, 76(15), 2686–2689.CrossRefPubMedGoogle Scholar
  19. Hayashi, Y., Blake, J., & Nasuto, S. J. (2016). Anticipatory engineering: anticipation in sensory-motor systems of human. Anticipation across Disciplines, 29, 275–282.CrossRefGoogle Scholar
  20. Just, W., Benner, H., & Schöll, E. (2003). Control of chaos by time-delayed feedback: A survey of theoretical and experimental aspects. Advances in Solid State Physics, 43(43), 589–603.CrossRefGoogle Scholar
  21. Kandic, M., & Bridges, G. E. (2013). Limits of negative group delay phenomenon in linear causal media. Progress in Electromagnetics Research, 134, 227–246.CrossRefGoogle Scholar
  22. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.CrossRefPubMedGoogle Scholar
  23. Kitano, M., Nakanishi, T., & Sugiyama, K. (2003). Negative group delay and superluminal propagation: An electronic circuit approach. IEEE Journal of Selected Topics in Quantum Electronics, 9(1), 43–51.CrossRefGoogle Scholar
  24. Krstic, M. (2009). Delay compensation for nonlinear, adaptive, and PDE systems. Boston: Birkhauser.CrossRefGoogle Scholar
  25. Langenberg, U., Kessler, K., Hefter, H., Cooke, J. D., Brown, S. H., & Freund, H. J. (1992). Effects of delayed visual feedback during sinusoidal visuomotor tracking. European Journal of Neuroscience Society of Neuroscience Abstract Supplement, 5, 209–209.Google Scholar
  26. Lee, E. B. (1994). Approximation of linear input/output delay differential systems. In L. Markus, K. D. Elworthy, W. N. Everitt, & E. B. Lee (Eds.), Differential equations, dynamical systems, and control science: A festschrift in honor of Lawrence Markus - Lecture Notes in Pure and Applied Mathematics (pp. 659–682, Vol. 152). New York: M. Dekker.Google Scholar
  27. Lichtner, M., Wolfrum, M., & Yanchuk, S. (2011). The spectrum of delay differential equations with large delay. SIAM Journal on Mathematical Analysis, 43(2), 788–802.CrossRefGoogle Scholar
  28. Loram, I. D., Lakie, M., & Gawthrop, P. J. (2009). Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control? Journal of Physiology-London, 587(6), 1343–1365.CrossRefGoogle Scholar
  29. Matias, F. S., Carelli, P. V., Mirasso, C. R., & Copelli, M. (2011). Anticipated synchronization in a biologically plausible model of neuronal motifs. Physical Review E, 84(2), 021922.CrossRefGoogle Scholar
  30. Matias, F. S., Carelli, P. V., Mirasso, C. R., & Copelli, M. (2015). Self-organized near-zero-lag synchronization induced by spike-timing dependent plasticity in cortical populations. PLoS One, 10(10), e0140504.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88(2), 942–953.PubMedGoogle Scholar
  32. Mendoza, C., Boccaletti, S., & Politi, A. (2004). Convective instabilities of synchronization manifolds in spatially extended systems. Physical Review E, 69(4), 047202.CrossRefGoogle Scholar
  33. Miall, R. C., & Jackson, J. K. (2006). Adaptation to visual feedback delays in manual tracking: evidence against the Smith Predictor model of human visually guided action. Experimental Brain Research, 172(1), 77–84.CrossRefPubMedGoogle Scholar
  34. Michiels, W., & Niculescu, S. I. (2007). Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Philadelphia: SIAM.CrossRefGoogle Scholar
  35. Milton, J., Meyer, R., Zhvanetsky, M., Ridge, S., & Insperger, T. (2016). Control at stability’s edge minimizes energetic costs: expert stick balancing. J R Soc Interface, 13(119), 20160212. doi: 10.1098/rsif.2016.0212.
  36. Milton, J. G. (2011). The delayed and noisy nervous system: implications for neural control. Journal of Neural Engineering, 8(6), 065005.Google Scholar
  37. Milton, J. G., Longtin, A., Beuter, A., Mackey, M. C., & Glass, L. (1989). Complex dynamics and bifurcations in neurology. Journal of Theoretical Biology, 138(2), 129–147.CrossRefPubMedGoogle Scholar
  38. Mitchell, M. W., & Chiao, R. Y. (1997). Negative group delay and “fronts” in a causal system: An experiment with very low frequency bandpass amplifiers. Physics Letters A, 230(3–4), 133–138.CrossRefGoogle Scholar
  39. Munakata, T., Iwama, S., & Kimizuka, M. (2009). Linear stochastic system with delay: Energy balance and entropy production. Physical Review E, 79(3), 031104.CrossRefGoogle Scholar
  40. Nakanishi, T., Sugiyama, K., & Kitano, M. (2002). Demonstration of negative group delays in a simple electronic circuit. American Journal of Physics, 70(11), 1117–1121.CrossRefGoogle Scholar
  41. Nijhawan, R. (2008). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31(2), 179–198; discussion 198–239.Google Scholar
  42. Pouget, A., & Snyder, L. H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience, 3(11), 1192–1198.CrossRefPubMedGoogle Scholar
  43. Pyragiene, T., & Pyragas, K. (2013). Anticipating spike synchronization in nonidentical chaotic neurons. Nonlinear Dynamics, 74(1–2), 297–306.CrossRefGoogle Scholar
  44. Pyragiene, T., & Pyragas, K. (2015). Anticipating synchronization in a chain of chaotic oscillators with switching parameters. Physics Letters A, 379(47–48), 3084–3088.CrossRefGoogle Scholar
  45. Siddiqui, O. F., Mojahedi, M., & Eleftheriades, G. V. (2003). Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Transactions on Antennas and Propagation, 51(10), 2619–2625.CrossRefGoogle Scholar
  46. Smith, K. U. (1962). Delayed Sensory Feedback and Behavior. Philadelphia: W.B. Saunders Co..Google Scholar
  47. Smith, O. J. M. (1959). A controller to overcome dead time. ISA. Journal, 6(2), 28–33.Google Scholar
  48. Stepp, N. (2009). Anticipation in feedback-delayed manual tracking of a chaotic oscillator. Experimental Brain Research, 198(4), 521–525.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Stepp, N., & Turvey, M. T. (2008). Anticipating synchronization as an alternative to the internal model. Behavioral and Brain Sciences, 31(2), 216–217.CrossRefGoogle Scholar
  50. Tass, P., Kurths, J., Rosenblum, M. G., Guasti, G., & Hefter, H. (1996). Delay-induced transitions in visually guided movements. Physical Review E, 54(3), R2224–R2227.CrossRefGoogle Scholar
  51. Voss, H. U. (2000). Anticipating chaotic synchronization. Physical Review E, 61(5), 5115–5119.CrossRefGoogle Scholar
  52. Voss, H. U. (2001a). A backward time shift filter for nonlinear delayed-feedback systems. Physics Letters A, 279(3–4), 207–214.CrossRefGoogle Scholar
  53. Voss, H. U. (2001b). Dynamic long-term anticipation of chaotic states. Physical Review Letters, 87(1), –014102.Google Scholar
  54. Voss, H. U. (2002). Fast response by synchronization. In K.-H. Hoffmann (Ed.), 2nd caesarium - Coupling of Biological and Electronic Systems, Bonn (Germany), 2002 (pp. 119–126). Berlin: Springer.Google Scholar
  55. Voss, H. U. (2016a). The leaky integrator with recurrent inhibition as a predictor. Neural Computation, 28(8), 1498–1502.Google Scholar
  56. Voss, H. U. (2016b). Signal prediction by anticipatory relaxation dynamics. Physical Review E, 93, 030201(R).Google Scholar
  57. Voss, H. U. (2016c). A simple predictor based on delay-induced negative group delay. arxiv.org/abs/1606.07791, 1–13.
  58. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(11), 1212–1217.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Radiology, Citigroup Biomedical Imaging CenterWeill Cornell MedicineNew YorkUSA
  2. 2.Information and Systems Sciences LabHRL Laboratories, LLCMalibuUSA

Personalised recommendations