Journal of Computational Neuroscience

, Volume 41, Issue 2, pp 127–142 | Cite as

AMPA/NMDA cooperativity and integration during a single synaptic event

  • Vito Di Maio
  • Francesco Ventriglia
  • Silvia Santillo


Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance.


AMPA NMDA Glutamatergic synapse Synaptic model Spine resistance AMPA/NMDA cooperativity LPT 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmad, M., Polepalli, J.S., Goswami, D., Yang, X., Kaeser-Woo, Y.J., Südhof, T.C., & Malenka, R.C. (2012). Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron, 73(2), 260–267. doi: 10.1016/j.neuron.2011.11.020.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Auger, C., & Martin, A. (2000). Quantal currents at single-site central synapse. The Journal of Physiology, 526, 3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beattie, E.C., Carroll, R.C., Yu, X., Morishita, W., Yasuda, H., Von Zastrow, M., & Malenka, R.C. (2000). Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neuroscience, 3(12), 1291–1300. doi: 10.1038/81823.CrossRefPubMedGoogle Scholar
  4. Clements, J.D., Lester, R.A., Tong, J., Jahr, C.E., & Westbrook, G.L. (1992). The time course of glutamate in the synaptic cleft. Science, 258, 1498–1501.CrossRefPubMedGoogle Scholar
  5. Di Maio, V. (2008). Regulation of information passing by synaptic transmission: a short review. Brain Research, 1225, 26–38.CrossRefPubMedGoogle Scholar
  6. Di Maio, V., Ventriglia, F., & Santillo, S. (2015). A model of Dopamine modulated glutamatergic synaspe. Biosystems, 136, 59–65. doi: 10.1002/0470841559.ch1.CrossRefPubMedGoogle Scholar
  7. Di Maio, V., Ventriglia, F., & Santillo, S. (2016a). A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cognitive Neurodynamics. doi: 10.1007/s11571-016-9383-3.
  8. Di Maio, V., Ventriglia, F., & Santillo, S. (2016b). A model of Dopamine modulation of glutamatergic synapse on medium size spiny neurons. Biosystems. doi: 10.1016/j.biosystems.2016.03.001.
  9. Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. (1999). The gutamate receptor ion channels. Pharmacological Reviews, 51, 7–61.PubMedGoogle Scholar
  10. Forti, L., Bossi, M., Bergamaschi, A., Villa, A., & Malgaroli, A. (1997). Loose path recording of single quanta at individual hippocampal synapses. Nature, 388, 874–878.CrossRefPubMedGoogle Scholar
  11. Greger, I.H., Ziff, E.B., & Penn, A.C. (2007). Molecular determinants of AMPA receptor subunit assembly. Trends in Neurosciences, 30(8), 407–416. doi: 10.1016/j.tins.2007.06.005.CrossRefPubMedGoogle Scholar
  12. Harnett, M., Makara, J., Spruston, N., Kath, W., & JC, M. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 491, 599–602.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jahr, C., & Stevens, C. (1990). Voltage Dependence of NMDA-Activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10, 3178–3182.PubMedGoogle Scholar
  14. Kokaia, M. (2000). Long-term potentiation of single subicular neurons in mice. Hippocampus, 10(6), 684–692. doi: 10.1002/1098-1063(2000)10:6.CrossRefPubMedGoogle Scholar
  15. Kupper, J., Ascher, P., & Neyton, J. (1998). Internal M g 2+ block of recombinant NMDA channels mutated within the selectivity filter and expressed in Xenopus oocytes. The Journal of Physiology, 507, 1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Larkman, A.U., & Jack, J.J. (1995). Synaptic plasticity: hippocampal LTP. Current Opinion in Neurobiology, 5(3), 324–334.CrossRefPubMedGoogle Scholar
  17. Lu, W., Man, H., Ju, W., Trimble, W.S., MacDonald, J.F., & Wang, Y.T. (2001). Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron, 29(1), 243–254.CrossRefPubMedGoogle Scholar
  18. Majewska, A., Tashiro, A., & Yuste, R. (2000). Regulation of spine calcium dynamics by rapid spine motility. The Journal of Neuroscience, 20, 8262–8268.PubMedGoogle Scholar
  19. Malinow, R., & Malenka, R.C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126. doi: 10.1146/annurev.neuro.25.112701.142758.CrossRefPubMedGoogle Scholar
  20. Mayer, M.L. (2005). Glutamate receptor ion channels. Current Opinion in Neurobiology, 15, 282–288. doi: 10.1016/j.conb.2005.05.004.CrossRefPubMedGoogle Scholar
  21. Megias, M., Emri, Z., Freund, T.F., & Gulyas, A.I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527– 540.CrossRefPubMedGoogle Scholar
  22. Meldolesi, J. (1995). Long-term potentiation. The cell biology connection. Current Biology, 5(9), 1006–1008.CrossRefPubMedGoogle Scholar
  23. Molnár, E. (2011). Long-term potentiation in cultured hippocampal neurons. Seminars in Cell and Developmental Biology, 22(5), 506–513. doi: 10.1016/j.semcdb.2011.07.017.CrossRefPubMedGoogle Scholar
  24. Nicoll, R., & Schmitz, D. (2005). Synaptic plasticity at hippocampal mossy fibre synapses. Nature Reviews Neuroscience, 6, 863–876.CrossRefPubMedGoogle Scholar
  25. Planert, H., Berger, T., & G S. (2013). Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine. Plos One, 8, 1–14.CrossRefGoogle Scholar
  26. Rall, W., & Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical Journal, 13, 648–688.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rao, V.R., & Finkbeiner, S. (2007). NMDA and AMPA receptors: old channels, new tricks. Trends in Neurosciences, 30(6), 284–291. doi: 10.1016/j.tins.2007.03.012.CrossRefPubMedGoogle Scholar
  28. Raymond, C.R. (2007). LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends in Neurosciences, 30(4), 167–175. doi: 10.1016/j.tins.2007.01.007.CrossRefPubMedGoogle Scholar
  29. Sanz-Clemente, A., Nicoll, R.A., & Roche, K.W. (2013). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist, 19(1), 62–75. doi: 10.1177/1073858411435129.CrossRefPubMedGoogle Scholar
  30. Schikorski, T., & Stevens, C.F. (1997). Quantitative ultrastructural analysis of hippocampal excitatory synapses. The Journal of Neuroscience, 17, 5858–5867.PubMedGoogle Scholar
  31. Schikorski, T., & Stevens, C.F. (2001). Morphological correlates of functionally defined synaptic vesicle populations. Nature Neuroscience, 4, 391–395.CrossRefPubMedGoogle Scholar
  32. Segev, I. (1998). Cable and compartmental models of dendritic trees. In Bower, J M, & Beeman, D (Eds.), The book of GENESIS: exploring realistic neural models with the general, neural, simulation systems (pp. 51–78). Whiley.Google Scholar
  33. Tønnesen, J., Rózsa, G., Katona, B., & Nägerl, U. (2014). Spine neck plasticity regulates compartmentalization of synapses. Nature Neuroscience, 17, 678–685.CrossRefPubMedGoogle Scholar
  34. Traynelis, S., Wollmuth, L., CJ, M., Menniti, F., Vance, K., Ogden, K., Hansen, K., Yuan, H., Myers, S., & Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews, 62, 405–496.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vargas-Caballero, M.I., & Robinson, H. (2004). Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: The asymmetric trapping block model. The Journal of Neuroscience, 24, 6171–6180.CrossRefPubMedGoogle Scholar
  36. Ventriglia, F. (2011). Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems, 104, 14–22.CrossRefPubMedGoogle Scholar
  37. Ventriglia, F., & Di Maio, V. (2000a). A Brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biological Cybernetics, 83, 93–109.Google Scholar
  38. Ventriglia, F., & Di Maio, V. (2000b). A Brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems, 58, 67–74.Google Scholar
  39. Ventriglia, F., & Di Maio, V. (2002). Stochastic fluctuation of the synaptic function. Biosystems, 67, 287–294.CrossRefPubMedGoogle Scholar
  40. Ventriglia, F., & Di Maio, V. (2003). Stochastic fluctuation of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems, 71, 195–204.CrossRefPubMedGoogle Scholar
  41. Ventriglia, F., & Di Maio, V. (2013a). Effects of AMPARs trafficking and glutamate-receptor binding probability on stochastic variability of EPSC. Biosystems, 112, 298–304.Google Scholar
  42. Ventriglia, F., & Di Maio, V. (2013b). Glutamate-AMPA interaction in a model of synaptic transmission. Brain Research, 1536, 168–176.Google Scholar
  43. Wickens, J. (1988). Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Progress in Neurobiology, 31, 507– 528.CrossRefPubMedGoogle Scholar
  44. Zakharenko, S.S., Zablow, L., & Siegelbaum, S.A. (2001). Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neuroscience, 4, 711–717. doi: 10.1038/89498.CrossRefPubMedGoogle Scholar
  45. Zito, K., & Scheuss, V. (2009). NMDA receptor function and physiological modulation. In Squire, L (Ed.), Encyclopedia of neuroscience, (Vol. 6 pp. 1157–1164). Oxford: Academic Press.Google Scholar
  46. Zuber, B., Nikonenko, I., Klauser, P., Muller, D., & Dobochet, J. (2005). The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Academy of Sciences of the United States of America, 102, 19,192–19,197.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vito Di Maio
    • 1
  • Francesco Ventriglia
    • 1
  • Silvia Santillo
    • 1
  1. 1.Istituto di Scienze Applicate e Sistemi Intelligenti del CNRPozzuoliItaly

Personalised recommendations