Journal of Computational Neuroscience

, Volume 38, Issue 1, pp 105–127 | Cite as

A neural mass model of place cell activity: theta phase precession, replay and imagination of never experienced paths

  • Filippo Cona
  • Mauro Ursino


Recent results on hippocampal place cells show that the replay of behavioral sequences does not simply reflect previously experienced trajectories, but may also occur in the reverse direction, or may even include never experienced paths. In order to elucidate the possible mechanisms at the basis of this phenomenon, we have developed a model of sequence learning. The present model consists of two layers of place cell units. Long-range connections among units implement heteroassociation between the two layers, trained with a temporal Hebb rule. The network was trained assuming that a virtual rat moves within a virtual maze. This training leads to the formation of bidirectional synapses between the two layers, i.e. synapses connecting a neuron both with its previous and subsequent element in the path. Subsequently, two distinct conditions were simulated with the trained network. During an exploratory phase, characterized by a similar consideration to the external environment and to the internal representation, the model simulates the occurrence of theta precession in the forward path and the temporal compression. During an imagination phase, when there is no consideration to the external location, the model produces trains of gamma oscillations, without the presence of a theta rhythm, and simulates the occurrence of both direct and reverse replay, and the imagination of never experienced paths. The new paths are built by combining bunches of previous trajectories. The main mechanisms at the basis of this behavior are explained in detail, and lines for future improvements (e.g., to simulate preplay) are discussed.


Computational model Heteroassociation Hebb rule Sequence memorization Spatial navigation 


Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Almeida, L., Idiart, M., & Lisman, J.E. (2007) Memory retrivial time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learning and Memory 14, 795–806.Google Scholar
  2. Battaglia, F. P., Sutherland, G. R., Cowen, S. L., Mc Naughton, B. L., & Harris, K. D. (2005). Firing rate modulation: a simple statistical view of memory trace reactivation. Neural Networks, 18(9), 1280–1291. doi: 10.1016/j.neunet.2005.08.011.PubMedCrossRefGoogle Scholar
  3. Bendor, D., & Wilson, M. A. (2012). Biasing the content of hippocampal replay during sleep. Nature Neuroscience, 15(10), 1439–1444. doi: 10.1038/nn.3203.PubMedCrossRefGoogle Scholar
  4. Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured Hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–72.PubMedGoogle Scholar
  5. Bi, G. Q., & Poo, M. M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–66.PubMedCrossRefGoogle Scholar
  6. Buhry, L., Azizi, A. H., & Cheng, S. (2011). Reactivation, replay, and preplay: how it might all fit together. Neural Plasticity, 2011, 203462. doi: 10.1155/2011/203462.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Buzsáki, G. (1989). Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience, 31(3), 551–570.PubMedCrossRefGoogle Scholar
  8. Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.PubMedCrossRefGoogle Scholar
  9. Cappaert, N. L. M., Lopes da Silva, F. H., & Wadman, W. J. (2009). Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices. Hippocampus, 19(11), 1065–1077. doi: 10.1002/hipo.20570.PubMedCrossRefGoogle Scholar
  10. Carr, M. F., Karlsson, M. P., & Frank, L. M. (2012). Transient slow gamma synchrony underlies hippocampal memory replay. Neuron, 75(4), 700–713. doi: 10.1016/j.neuron.2012.06.014.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M., & Moser, E. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353–7. doi: 10.1038/nature08573.PubMedCrossRefGoogle Scholar
  12. Cona, F., & Ursino, M. (2013). A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems, 23(3), 1–18.CrossRefGoogle Scholar
  13. Cona, F., Zavaglia, M., & Ursino, M. (2012). Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms. International Journal of Neural Systems, 22(02), 1–20. doi: 10.1142/S0129065712500037.CrossRefGoogle Scholar
  14. Cona, F., Lacanna, M., & Ursino, M. (2014). A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. Journal of Computational Neuroscience, 37(1), 125–48. doi: 10.1007/s10827-013-0493-1.PubMedCrossRefGoogle Scholar
  15. Crick, F., & Mitchison, G. (1983). The function of dream sleep. Nature, 304(5922), 111–114.PubMedCrossRefGoogle Scholar
  16. Csicsvari, J., O’Neill, J., Allen, K., & Senior, T. (2007). Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. The European Journal of Neuroscience, 26(3), 704–716. doi: 10.1111/j.1460-9568.2007.05684.x.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cutsuridis, V., Cobb, S., & Graham, B. P. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 20(3), 423–446. doi: 10.1002/hipo.20661.PubMedGoogle Scholar
  18. David, O., Harrison, L., & Friston, K. J. (2005). Modelling event-related responses in the brain. NeuroImage, 25(3), 756–770. doi: 10.1016/j.neuroimage.2004.12.030.PubMedCrossRefGoogle Scholar
  19. Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63(4), 497–507. doi: 10.1016/j.neuron.2009.07.027.PubMedCrossRefGoogle Scholar
  20. Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10(10), 1241–1242. doi: 10.1038/nn1961.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dockendorf, K., & Srinivasa, N. (2013). Learning and prospective recall of noisy spike pattern episodes. Frontiers in Computational Neuroscience, 7, 80. doi: 10.3389/fncom.2013.00080.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50(1), 145–157. doi: 10.1016/j.neuron.2006.02.023.PubMedCrossRefGoogle Scholar
  23. Dragoi, G., & Tonegawa, S. (2011). Preplay of future place cell sequences by hippocampal cellular assemblies. Nature, 469(7330), 397–401. doi: 10.1038/nature09633.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Dragoi, G., & Tonegawa, S. (2013). Distinct preplay of multiple novel spatial experiences in the rat. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9100–9105. doi: 10.1073/pnas.1306031110.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Ekstrom, A. D., Meltzer, J., McNaughton, B. L., & Barnes, C. A. (2001). NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.”. Neuron, 31(4), 631–638.PubMedCrossRefGoogle Scholar
  26. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47. doi: 10.1093/cercor/1.1.1.PubMedCrossRefGoogle Scholar
  27. Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683. doi: 10.1038/nature04587.PubMedCrossRefGoogle Scholar
  28. Foster, D. J., & Wilson, M. A. (2007). Hippocampal theta sequences. Hippocampus, 17(11), 1093–1099. doi: 10.1002/hipo.20345.PubMedCrossRefGoogle Scholar
  29. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65(5), 695–705. doi: 10.1016/j.neuron.2010.01.034.PubMedCrossRefGoogle Scholar
  30. Harvey, C. D., Collman, F., Dombeck, D. A., & Tank, D. W. (2009). Intracellular dynamics of hippocampal place cells during virtual navigation. Nature, 461(7266), 941–946. doi: 10.1038/nature08499.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817. doi: 10.1162/089976602317318965.PubMedCrossRefGoogle Scholar
  32. Hopfield, J. J. (2010). Neurodynamics of mental exploration. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1648–1653. doi: 10.1073/pnas.0913991107.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Huxter, J. R., Senior, T. J., Allen, K., & Csicsvari, J. (2008). Theta phase specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nature Neuroscience, 11(5), 587–594.PubMedCrossRefGoogle Scholar
  34. Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science, 336(6087), 1454–1458. doi: 10.1126/science.1217230.PubMedCrossRefGoogle Scholar
  35. Jeewajee, A., Lever, C., Burton, S., O’Keefe, J., & Burgess, N. (2008). Environmental novelty is signaled by reduction of the Hippocampal theta frequency. Hippocampus, 18(4), 340–348.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Jeewajee, A., Barry, C., Douchamps, V., Manson, D., Lever, C., & Burgess, N. (2013). Theta phase precession and grid and place cell firing in open environments. Phil. Trans. Rol. Soc. B, 369(1635): doi: 10.1098/rstb.2012.0532.Google Scholar
  37. Jensen, O., & Lisman, J. E. (1996a). Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & Memory, 3(2–3), 279–287.CrossRefGoogle Scholar
  38. Jensen, O., & Lisman, J. E. (1996b). Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learning & Memory, 3(2–3), 264–278.CrossRefGoogle Scholar
  39. Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28(2), 67–72. doi: 10.1016/j.tins.2004.12.001.PubMedCrossRefGoogle Scholar
  40. Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12(7), 913–918. doi: 10.1038/nn.2344.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kloosterman, F., van Haeften, T., & Lopes da Silva, F. H. (2004). Two reentrant pathways in the hippocampal-entorhinal system. Hippocampus, 14(8), 1026–1039.PubMedCrossRefGoogle Scholar
  42. Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.PubMedCrossRefGoogle Scholar
  43. Lengyel, M., Szatmáry, Z., & Erdi, P. (2003). Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus, 13(6), 700–714. doi: 10.1002/hipo.10116.PubMedCrossRefGoogle Scholar
  44. Lisman, J. E. (1999). Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22(2), 233–242.PubMedCrossRefGoogle Scholar
  45. Lisman, J. E., & Buzsáki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophrenia Bulletin, 34(5), 974–980. doi: 10.1093/schbul/sbn060.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lisman, J. E., & Redish, A. D. (2009). Prediction, sequences and the hippocampus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1193–1201. doi: 10.1098/rstb.2008.0316.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Lisman, J. E., Talamini, L. M., & Raffone, A. (2005). Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Networks, 18(9), 1191–1201. doi: 10.1016/j.neunet.2005.08.008.PubMedCrossRefGoogle Scholar
  48. Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.PubMedCrossRefGoogle Scholar
  49. Manns, J. R., Zilli, E. A., Ong, K. C., Hasselmo, M. E., & Eichenbaum, H. (2007). Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. Neurobiology of Learning and Memory, 87(1), 9–20. doi: 10.1016/j.nlm.2006.05.007.PubMedCrossRefGoogle Scholar
  50. Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215. doi: 10.1126/science.275.5297.213.PubMedCrossRefGoogle Scholar
  51. Maurer, A. P., & McNaughton, B. L. (2007). Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends in Neurosciences, 30(7), 325–333. doi: 10.1016/j.tins.2007.05.002.PubMedCrossRefGoogle Scholar
  52. Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion of hippocampal place fields. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8918–8921.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Mitchell, S. J., & Ranck, J. B., Jr. (1980). Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Research, 189(1), 49–66.PubMedCrossRefGoogle Scholar
  54. Mizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-Hippocampal loop. Neuron, 64(2), 267–280.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Montgomery, S. M., Betancur, M. I., & Buzsáki, G. (2009). Behavior-dependent coordination of multiple theta dipoles in the hippocampus. Journal of Neuroscience, 29(5), 1381–1394.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.PubMedCrossRefGoogle Scholar
  57. Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., & Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. The Journal of Neuroscience, 19(21), 9497–9507.PubMedGoogle Scholar
  58. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.PubMedCrossRefGoogle Scholar
  59. O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330. doi: 10.1002/hipo.450030307.PubMedCrossRefGoogle Scholar
  60. O’Neill, J., Senior, T., & Csicsvari, J. (2006). Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron, 49(1), 143–155. doi: 10.1016/j.neuron.2005.10.037.PubMedCrossRefGoogle Scholar
  61. O'Keefe, J., & Burgess, N. (2005). Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus, 15(7), 853–66. doi: 10.1002/hipo.20115.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Scharfman, H. E. (2007). The CA3 “backprojection” to the dentate gyrus. Progress in Brain Research, 163, 627–37. doi: 10.1016/S0079-6123(07)63034-9.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Singer, A. C., & Frank, L. M. (2009). Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron, 64(6), 910–921. doi: 10.1016/j.neuron.2009.11.016.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172.PubMedCrossRefGoogle Scholar
  65. Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169–177.PubMedCrossRefGoogle Scholar
  66. Taube, J. S., Muller, R. U., & Ranck, J. B. J. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. The Journal of Neuroscience, 10(2), 420–435.PubMedGoogle Scholar
  67. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron mode. Hippocampus, 6(3), 271–280.PubMedCrossRefGoogle Scholar
  68. Ursino, M., Cona, F., & Zavaglia, M. (2010). The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage, 52(3), 1080–1094.PubMedCrossRefGoogle Scholar
  69. Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78(1), 393–408.PubMedGoogle Scholar
  70. Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261(5124), 1055–1058.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”University of BolognaCesenaItaly

Personalised recommendations