Journal of Computational Neuroscience

, Volume 37, Issue 1, pp 105–124 | Cite as

A probabilistic framework for a physiological representation of dynamically evolving sleep state

  • Vera M. Dadok
  • Heidi E. Kirsch
  • Jamie W. Sleigh
  • Beth A. Lopour
  • Andrew J. Szeri


This work presents a probabilistic method for mapping human sleep electroencephalogram (EEG) signals onto a state space based on a biologically plausible mathematical model of the cortex. From a noninvasive EEG signal, this method produces physiologically meaningful pathways of the cortical state over a night of sleep. We propose ways in which these pathways offer insights into sleep-related conditions, functions, and complex pathologies. To address explicitly the noisiness of the EEG signal and the stochastic nature of the mathematical model, we use a probabilistic Bayesian framework to map each EEG epoch to a distribution of likelihoods over all model sleep states. We show that the mapping produced from human data robustly separates rapid eye movement sleep (REM) from slow wave sleep (SWS). A Hidden Markov Model (HMM) is incorporated to improve the path results using the prior knowledge that cortical physiology has temporal continuity.


Sleep Cortex Acetylcholine Adenosine 



This work was partially supported by an NSF Graduate Research Fellowship to Vera Dadok and in part by the National Science Foundation through the research grant CMMI 1031811. We would also like to thank Kevin Haas and Prashanth Selvaraj for their suggestions and insights.

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.CrossRefGoogle Scholar
  2. Bonnet, M., Carley, D., Carskadon, M., Easton, P., Guilleminault, C., Harper, R., Hayes, B., Hirshkowitz, M., Ktonas, P., Keenan, S., Pressman, M., Roehrs, T., Smith, J., Walsh, J., Weber, S., Westbrook, P. (1992). EEG arousals: scoring rules and examples. Sleep, 15(2), 173–184.Google Scholar
  3. Borgelt, C., Steinbrecher, M., Kruse, R.R. (2009). Naive classifiers. In Graphical models: representations for learning, reasoning and data mining (2nd edn, chapter 6, Vol. 704). Wiley, Chichester.Google Scholar
  4. Brandenberger, G., Ehrhart, J., Buchheit, M. (2005). Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality. Sleep, 28(12), 1535.PubMedGoogle Scholar
  5. Bushey, D., Tononi, G., Cirelli, C. (2011). Sleep and synaptic homeostasis: structural evidence in drosophila. Science, 332(6037), 1576–1581.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dash, M.B., Douglas, C.L., Vyazovskiy, V.V., Cirelli, C., Tononi, G. (2009). Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. The Journal of Neuroscience, 29(3), 620–629.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Esser, S.K., Hill, S., Tononi, G. (2009). Breakdown of effective connectivity during slow wave sleep: Investigating the mechanism underlying a cortical gate using large-scale modeling. Journal of Neurophysiology, 102(4), 2096–2111.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E. (2000). Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220. Circulation Electronic Pages: Scholar
  9. Hangya, B., Tihanyi, B.T., Entz, L., Fabó, D., Eróss, L., Wittner, L., Jakus, R., Varga, V., Freund, T.F., Ulbert, I. (2011). Complex propagation patterns characterize human cortical activity during slow-wave sleep. The Journal of Neuroscience, 31(24), 8770–8779.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hardie, J.B., & Pearce, R.A. (2006). Active and passive membrane properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 26(33), 8559–8569.PubMedCrossRefGoogle Scholar
  11. Kandel, E., Schwartz, J., Jessell, T. (2000). In Principles of neural science Vol. vol 4. New York: McGraw-Hill.Google Scholar
  12. Kemp, B. (2009). The Sleep-EDF Database. Accessed Sept 2012.
  13. Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A., Oberye, J.J. (2000). Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. IEEE Transactions on Biomedical Engineering, 47(9), 1185–1194.PubMedCrossRefGoogle Scholar
  14. Kramer, M.A., Kirsch, H.E., Szeri, A.J. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society Interface, 2(2), 113–127.PubMedCentralCrossRefGoogle Scholar
  15. Kramer, M.A., Szeri, A.J., Kirsch, H.E. (2007). Mechanisms of seizure propagation in a cortical model. Journal of Computational Neuroscience, 22(1), 63–80.PubMedCrossRefGoogle Scholar
  16. Leslie, K., Sleigh, J.W., Paech, M.J., Voss, L., Lim, C.W., Sleigh, C. (2009). Dreaming and electroencephalographic changes during anesthesia maintained with propofol or desflurane. Anesthesiology, 111(3), 547.PubMedCrossRefGoogle Scholar
  17. Liley, D.T.J., Cadusch, P.J., Wright, J.J. (1999). A continuum theory of electro-cortical activity. Neurocomputing, 26, 795–800.CrossRefGoogle Scholar
  18. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2002). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13(1), 67–113.CrossRefGoogle Scholar
  19. Liu, Z.W., Faraguna, U., Cirelli, C., Tononi, G., Gao, X.B. (2010). Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. The Journal of Neuroscience, 30(25), 8671–8675.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lopour, B.A., & Szeri, A.J. (2010). A model of feedback control for the charge-balanced suppression of epileptic seizures. Journal of Computational Neuroscience, 28(3), 375–387.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Lopour, B.A., Tasoglu, S., Kirsch, H.E., Sleigh, J.W., Szeri, A.J. (2011). A continuous mapping of sleep states through association of EEG with a mesoscale cortical model. Journal of Computational Neuroscience, 30(2), 471–487.PubMedCentralPubMedCrossRefGoogle Scholar
  22. MacKay, E.C., Sleigh, J.W., Voss, L.J., Barnard, J.P. (2010). Episodic waveforms in the electroencephalogram during general anaesthesia: A study of patterns of response to noxious stimuli. Anaesthesia and Intensive Care, 38(1), 102–112.PubMedGoogle Scholar
  23. Müller, B., Gäbelein, W.D., Schulz, H. (2006). A taxonomic analysis of sleep stages. Sleep, 29(7), 967.PubMedGoogle Scholar
  24. Olofsen, E., Sleigh, J.W., Dahan, A. (2008). Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. British Journal of Anaesthesia, 101(6), 810–821.PubMedCrossRefGoogle Scholar
  25. Phillips, A.J., Robinson, P.A., Kedziora, D.J., Abeysuriya, R.G. (2010). Mammalian sleep dynamics: How diverse features arise from a common physiological framework. PLOS Computational Biology, 6(6), e1000826.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Ram, S., Seirawan, H., Kumar, S.K., Clark, G.T. (2010). Prevalence and impact of sleep disorders and sleep habits in the United States. Sleep and Breathing, 14(1), 63–70.PubMedCrossRefGoogle Scholar
  27. Rechtschaffen, A., & Kales, A. (1968). In A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, 204th edn. Washington, DC: US Government Printing Office, US Public Health Service.Google Scholar
  28. Riedner, B.A., Vyazovskiy, V.V., Huber, R., Massimini, M., Esser, S., Murphy, M., Tononi, G. (2007). Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep, 30(12), 1643.PubMedCentralPubMedGoogle Scholar
  29. Rodenbeck, A., Binder, R., Geisler, P., Danker-Hopfe, H., Lund, R., Raschke, F., Weeß, H.G., Schulz, H. (2006). A review of sleep EEG patterns. Part I: A compilation of amended rules for their visual recognition according to Rechtschaffen and Kales. Somnologie, 10(4), 159–175.CrossRefGoogle Scholar
  30. Saper, C.B., Scammell, T.E., Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263.PubMedCrossRefGoogle Scholar
  31. Steyn-Ross, D.A., & Steyn-Ross, M.L. (2010). In Modeling phase transitions in the brain. New York: Springer.CrossRefGoogle Scholar
  32. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J. (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Physical Review E, 60(6), 7299.CrossRefGoogle Scholar
  33. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W. (2004). Modelling general anaesthesia as a first-order phase transition in the cortex. Progress in Biophysics & Molecular Biology, 85, 369–385.CrossRefGoogle Scholar
  34. Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J. (2005). The sleep cycle modelled as a cortical phase transition. Journal of Biological Physics, 31(3), 547–569.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W. (2009). Modeling brain activation patterns for the default and cognitive states. NeuroImage, 45(2), 298–311.PubMedCrossRefGoogle Scholar
  36. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W. (2012). Gap junctions modulate seizures in a mean-field model of general anesthesia for the cortex. Cognitive Neurodynamics, 6(3), 215–225.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Terzano, M.G., & Parrino, L. (2000). Origin and significance of the cyclic alternating pattern (CAP): Review article. Sleep Medicine Reviews, 4(1), 101–123.PubMedCrossRefGoogle Scholar
  38. Tsimpiris, A., & Kugiumtzis, D. (2010). Measures of analysis of time series (MATS): A MATLAB toolkit for computation of multiple measures on time series data bases. Journal of Statistical Software, 33(5).Google Scholar
  39. Vaseghi, S.V. (2008). In Advanced digital signal processing and noise reduction. Chichester: Wiley.Google Scholar
  40. Wilson, M.T., Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L. (2006a). General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology, 104(3), 588–593.PubMedCrossRefGoogle Scholar
  41. Wilson, M.T., Steyn-Ross, D.A., Sleigh, J.W., Steyn-Ross, M.L., Wilcocks, L.C., Gillies, I.P. (2006b). The K-complex and slow oscillation in terms of a mean-field cortical model. Journal of Computational Neuroscience, 21(3), 243–257.PubMedCrossRefGoogle Scholar
  42. Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W. (2007). Predictions and simulations of cortical dynamics during natural sleep using a continuum approach. Physical Review, E 72(5), 051910.Google Scholar
  43. Wilson, M.T., Barry, M., Reynolds, J.N., Crump, W.P., Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W. (2010). An analysis of the transitions between down and up states of the cortical slow oscillation under urethane anaesthesia. Journal of Biological Physics, 36(6), 245–259.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vera M. Dadok
    • 1
  • Heidi E. Kirsch
    • 2
  • Jamie W. Sleigh
    • 3
  • Beth A. Lopour
    • 4
  • Andrew J. Szeri
    • 5
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of AnestheticsWaikato Clinical SchoolHamiltonNew Zealand
  4. 4.Department of Biomedical EngineeringUniversity of CaliforniaIrvineUSA
  5. 5.Center for Neural Engineering and Prostheses, and Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations