# Fast state-space methods for inferring dendritic synaptic connectivity

- 385 Downloads
- 5 Citations

## Abstract

We present fast methods for filtering voltage measurements and performing optimal
inference of the location and strength of synaptic connections in large dendritic
trees. Given noisy, subsampled voltage observations we develop fast *l* _{1}-penalized regression methods for Kalman state-space models
of the neuron voltage dynamics. The value of the *l* _{1}-penalty parameter is chosen using cross-validation or, for
low signal-to-noise ratio, a Mallows’ *C* _{ p }-like criterion. Using low-rank approximations, we reduce the inference
runtime from cubic to linear in the number of dendritic compartments. We also
present an alternative, fully Bayesian approach to the inference problem using a
spike-and-slab prior. We illustrate our results with simulations on toy and real
neuronal geometries. We consider observation schemes that either scan the dendritic
geometry uniformly or measure linear combinations of voltages across several
locations with random coefficients. For the latter, we show how to choose the
coefficients to offset the correlation between successive measurements imposed by
the neuron dynamics. This results in a “compressed sensing” observation scheme, with
an important reduction in the number of measurements required to infer the synaptic
weights.

## Keywords

Lasso Dendrites Low-rank State-space Synapses Spike-and-slab Compressed sensing## Notes

### Acknowledgments

This work was supported by an NSF CAREER grant, a McKnight Scholar award, and by NSF grant IIS-0904353. This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract number W911NF-12-1-0594. JHH was partially supported by the Columbia College Rabi Scholars Program. AP was partially supported by the Swartz Foundation. The computer simulations were done in the Hotfoot HPC Cluster of Columbia University. We thank E. Pnevmatikakis for helpful discussions and comments.

### Conflict of interests

The authors declare that they have no conflict of interest.

## References

- Barbour, B., Brunel, N., Hakim, V., Nadal, J.-P. (2007). What can we learn from synaptic weight distributions?
*TRENDS in Neurosciences*,*30*(12), 622–629.PubMedCrossRefGoogle Scholar - Bloomfield, S., & Miller, R. (1986). A functional organization of ON and OFF pathways in the rabbit retina.
*Journal of Neuroscience*,*6*(1), 1–13.PubMedGoogle Scholar - Candes, E., Romberg, J., Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements.
*Communications on Pure and Applied Mathematics*,*59*(8), 1207–1223.CrossRefGoogle Scholar - Candès, E., & Wakin, M. (2008). An introduction to compressive sampling.
*IEEE Signal Processing Magazine*,*25*(2), 21–30.CrossRefGoogle Scholar - Canepari, M., Djurisic, M., Zecevic, D. (2007). Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study.
*Journal of Physiology*,*580*(2), 463–484.PubMedCentralPubMedCrossRefGoogle Scholar - Canepari, M., Vogt, K., Zecevic, D. (2008). Combining voltage and calcium imaging from neuronal dendrites.
*Cellular and Molecular Neurobiology*,*28*, 1079–1093.PubMedCentralPubMedCrossRefGoogle Scholar - Djurisic, M., Antic, S., Chen, W.R., Zecevic, D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones.
*Journal of Neuroscience*,*24*(30), 6703–6714.PubMedCrossRefGoogle Scholar - Djurisic, M., Popovic, M., Carnevale, N., Zecevic, D. (2008). Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb.
*Journal of Neuroscience*,*28*(15), 4057–4068.PubMedCrossRefGoogle Scholar - Dombeck, D.A., Blanchard-Desce, M., Webb, W.W. (2004). Optical recording of action potentials with second-harmonic generation microscopy.
*Journal of Neuroscience*,*24*(4), 999–1003.PubMedCrossRefGoogle Scholar - Durbin, J., Koopman, S., Atkinson, A. (2001).
*Time series analysis by state space methods (Vol. 15)*. Oxford: Oxford University Press.Google Scholar - Efron, B. (2004). The estimation of prediction error.
*Journal of the American Statistical Association*,*99*(467), 619–632.CrossRefGoogle Scholar - Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004). Least angle regression.
*Annals of Statistics*,*32*, 407–499.CrossRefGoogle Scholar - Fisher, J.A.N., Barchi, J.R., Welle, C.G., Kim, G.-H., Kosterin, P., Obaid, A.L., Yodh, A.G., Contreras, D., Salzberg, B.M. (2008). Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ.
*Journal of Neurophysiology*,*99*(3), 1545–1553.PubMedCrossRefGoogle Scholar - Friedman, J., Hastie, T., Höfling, H., Tibshirani, R. (2007). Pathwise coordinate optimization.
*The Annals of Applied Statistics*,*1*(2), 302–332.CrossRefGoogle Scholar - Friedman, J., Hastie, T., Tibshirani, R. (2008).
*The elements of statistical learning.*Springer.Google Scholar - Gelman, A., Carlin, J., Stern, H., Rubin, D. (2004).
*Bayesian data analysis.*CRC press.Google Scholar - Geman, S., Bienenstock, E., Doursat, R. (1992). Neural networks and the bias/variance dilemma.
*Neural Computation*,*4*(1), 1–58.CrossRefGoogle Scholar - Gobel, W., & Helmchen, F. (2007). New angles on neuronal dendrites
*in vivo*.*Journal of Neurophysiology*,*98*(6), 3770–3779.PubMedCrossRefGoogle Scholar - Hines, M. (1984). Efficient computation of branched nerve equations.
*International Journal of Bio-Medical Computing*,*15*(1), 69–76.PubMedCrossRefGoogle Scholar - Huber, P. (1964). Robust estimation of a location parameter.
*The Annals of Mathematical Statistics*,*35*(1), 73–101.CrossRefGoogle Scholar - Huggins, J., & Paninski, L. (2012). Optimal experimental design for sampling voltage on dendritic trees.
*Journal of Computational Neuroscience*(in press).Google Scholar - Huys, Q., Ahrens, M., Paninski, L. (2006). Efficient estimation of detailed single-neuron models.
*Journal of Neurophysiology*,*96*, 872–890.PubMedCrossRefGoogle Scholar - Huys, Q., & Paninski, L. (2009). Model-based smoothing of, and parameter estimation from, noisy biophysical recordings.
*PLOS Computational Biology*,*5*, e1000379.PubMedCentralPubMedCrossRefGoogle Scholar - Iyer, V., Hoogland, T.M., Saggau, P. (2006). Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy.
*Journal of Neurophysiology*,*95*(1), 535–545.PubMedCrossRefGoogle Scholar - Knopfel, T., Diez-Garcia, J., Akemann, W. (2006). Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors.
*Trends in Neurosciences*,*29*, 160–166.PubMedCrossRefGoogle Scholar - Kralj, J., Douglass, A., Hochbaum, D., Maclaurin, D., Cohen, A. (2011). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin.
*Nature Methods*.Google Scholar - Larkum, M.E., Watanabe, S., Lasser-Ross, N., Rhodes, P., Ross, W.N. (2008). Dendritic properties of turtle pyramidal neurons.
*Journal of Neurophysiology*,*99*(2), 683–694.PubMedCentralPubMedCrossRefGoogle Scholar - Lin, Y., & Zhang, H. (2006). Component selection and smoothing in multivariate nonparametric regression.
*The Annals of Statistics*,*34*(5), 2272–2297.CrossRefGoogle Scholar - Mallows, C. (1973). Some comments on Cp.
*Technometrics*, pp. 661–675.Google Scholar - Milojkovic, B.A., Zhou, W.-L., Antic, S.D. (2007). Voltage and calcium transients in basal dendrites of the rat prefrontal cortex.
*Journal of Physiology*,*585*(2), 447–468.PubMedCentralPubMedCrossRefGoogle Scholar - Mishchenko, Y., & Paninski, L. (2012). A Bayesian compressed-sensing approach for reconstructing neural connectivity from subsampled anatomical data.
*Under review*.Google Scholar - Mishchenko, Y., Vogelstein, J., Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data.
*Annals of Applied Statistics*,*5*, 1229–1261.CrossRefGoogle Scholar - Mitchell, T.J., & Beauchamp, J.J. (1988). Bayesian variable selection in linear regression.
*Journal of the American Statistical Association*,*83*(404), 1023–1032.CrossRefGoogle Scholar - Nikolenko, V., Watson, B., Araya, R., Woodruff, A., Peterka, D., Yuste, R. (2008). SLM microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators.
*Frontiers in Neural Circuits*,*2*, 5.PubMedCentralPubMedCrossRefGoogle Scholar - Nuriya, M., Jiang, J., Nemet, B., Eisenthal, K., Yuste, R. (2006). Imaging membrane potential in dendritic spines.
*PNAS*,*103*, 786–790.PubMedCentralPubMedCrossRefGoogle Scholar - Pakman, A., & Paninski, L. (2013). Exact hamiltonian Monte Carlo for truncated multivariate gaussians.
*Journal of Computational and Graphical Statistics*, preprint arXiv:1208.4118. - Paninski, L. (2010). Fast Kalman filtering on quasilinear dendritic trees.
*Journal of Computational Neuroscience*,*28*, 211–28.PubMedCrossRefGoogle Scholar - Paninski, L., & Ferreira, D. (2008). State-space methods for inferring synaptic inputs and weights.
*COSYNE*.Google Scholar - Paninski, L., Vidne, M., DePasquale, B., Ferreira, D. (2012). Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods.
*Journal of Computational Neuroscience*(in press).Google Scholar - Peterka, D., Takahashi, H., Yuste, R. (2011). Imaging voltage in neurons.
*Neuron*,*69*(1), 9–21.PubMedCentralPubMedCrossRefGoogle Scholar - Pnevmatikakis, E.A., & Paninski, L. (2012). Fast interior-point inference in high-dimensional sparse, penalized state-space models.
*Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS) 2012, La Palma, Canary Islands. Volume XX of JMLR: W&CP XX*.Google Scholar - Pnevmatikakis, E.A., Kelleher, K., Chen, R., Saggau, P., Josić, K., Paninski, L. (2012a). Fast spatiotemporal smoothing of calcium measurements in dendritic trees, submitted.
*PLoS Computational Biology*,*8*, e1002569.Google Scholar - Pnevmatikakis, E.A., Paninski, L., Rad, K.R., Huggins, J. (2012b). Fast Kalman filtering and forward-backward smoothing via a low-rank perturbative approach.
*Journal of Computational and Graphical Statistics*(in press).Google Scholar - Press, W., Teukolsky, S., Vetterling, W., Flannery, B. (1992).
*Numerical recipes in C*. Cambridge: Cambridge University Press.Google Scholar - Reddy, G.D., & Saggau, P. (2005). Fast three-dimensional laser scanning scheme using acousto-optic deflectors.
*Journal of Biomedical Optics*,*10*(6), 064038.PubMedCrossRefGoogle Scholar - Sacconi, L., Dombeck, D.A., Webb, W.W. (2006). Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials.
*Proceedings of the National Academy of Sciences*,*103*(9), 3124–3129.CrossRefGoogle Scholar - Sjostrom, P.J., Rancz, E.A., Roth, A., Hausser, M. (2008). Dendritic excitability and synaptic plasticity.
*Physiological Reviews*,*88*(2), 769–840.PubMedCrossRefGoogle Scholar - Smith, C. (2013).
*Low-rank graphical models and Bayesian analysis of neural data*: PhD Thesis, Columbia University.Google Scholar - Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits.
*PLoS Biology*,*3*(3), e68.PubMedCentralPubMedCrossRefGoogle Scholar - Studer, V., Bobin, J., Chahid, M., Mousavi, H., Candes, E., Dahan, M. (2012). Compressive fluorescence microscopy for biological and hyperspectral imaging.
*Proceedings of the National Academy of Sciences*,*109*(26), E1679–E1687.CrossRefGoogle Scholar - Takahashi, N., Kitamura, K., Matsuo, N., Mayford, M., Kano, M., Matsuki, N., Ikegaya, Y. (2012). Locally synchronized synaptic inputs.
*Science*,*335*(6066), 353–356.PubMedCrossRefGoogle Scholar - Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
*Journal of the Royal Statistical Society. Series B*,*58*, 267–288.Google Scholar - Vucinic, D., & Sejnowski, T.J. (2007). A compact multiphoton 3d imaging system for recording fast neuronal activity.
*PLoS ONE*,*2*(8), e699.PubMedCentralPubMedCrossRefGoogle Scholar - Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables.
*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*,*68*(1), 49–67.CrossRefGoogle Scholar - Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.
*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*,*67*(2), 301–320.CrossRefGoogle Scholar - Zou, H., Hastie, T., Tibshirani, R. (2007). On the degrees of freedom of the lasso.
*The Annals of Statistics*,*35*(5), 2173–2192.CrossRefGoogle Scholar