Skip to main content
Log in

Low dimensional model of bursting neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A computationally efficient, biophysically-based model of neuronal behavior is presented; it incorporates ion channel dynamics in its two fast ion channels while preserving simplicity by representing only one slow ion current. The model equations are shown to provide a wide array of physiological dynamics in terms of spiking patterns, bursting, subthreshold oscillations, and chaotic firing. Despite its simplicity, the model is capable of simulating an extensive range of spiking patterns. Several common neuronal behaviors observed in vivo are demonstrated by varying model parameters. These behaviors are classified into dynamical classes using phase diagrams whose boundaries in parameter space prove to be accurately delineated by linear stability analysis. This simple model is suitable for use in large scale simulations involving neural field theory or neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alligood, K., Sauer, T., Yorke, J. (1997). Chaos, an introduction to dynamical systems. New York: Springer.

    Google Scholar 

  • Andrew, R.D., & Dudek, F.E. (1984). Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Journal of Neurophysiology, 51, 552–566.

    CAS  PubMed  Google Scholar 

  • Ascoli, G.A., Gasparini, S., Medinilla, V., Migliore, M. (2010). Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. Journal of Neuroscience, 30, 6424–6442.

    Article  Google Scholar 

  • Benda, J., Longtin, A., Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25, 2312–2321.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, R. (1993). A computational study of the effects of serotonin on a molluscan burster neuron. Biological Cybernetics, 69, 257–267.

    Article  Google Scholar 

  • Bertram, R., Butte, M.J., Kiemel, T., Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57, 413–439.

    CAS  PubMed  Google Scholar 

  • Best, J., Borisyuk, A., Rubin, J., Terman, D., Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal on Applied Dynamical Systems. 4, 1107–1139.

    Article  Google Scholar 

  • Butera, R.J., Rinzel, J., Smith, J.C. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82, 382–397.

    PubMed  Google Scholar 

  • Canavier, C., Clark, J., Byrne, J. (1991). Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. Journal of Neurophysiology, 66, 2107–2124.

    CAS  PubMed  Google Scholar 

  • Chase, S.M., & Young, E.D. (2007). First-spike latency information in single neurons increases when referenced to population onset. Proceedings of the National Academy of Sciences of the United States of America, 104, 762–773.

    Google Scholar 

  • Connor, J., Walter, D., McKown, R. (1977). Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophysical Journal, 18, 81–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connors, B., & Gutnick, M. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13, 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Coombes, S., & Bressloff, P.C. (2005). Bursting: the genesis of rhythm in the nervous system. Singapore: World Scientific.

    Book  Google Scholar 

  • Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M. (2012). Mixed-mode oscillations with multiple timescales. SIAM Review, 54, 211–288.

    Article  Google Scholar 

  • Dickenstein, A., & Emiris, I. (2005). Solving polynomial equations: foundations, algorithms, and applications (Vol. 14). Berlin: Springer.

    Google Scholar 

  • Dowling, J. (2001). Neurons and networks: an introduction to behavioral neuroscience. Cambridge: HUP.

    Google Scholar 

  • Ermentrout, B. (1998a). Linearization of FI curves by adaptation. Neural Computation, 10, 1721–1729.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, B. (1998b). Neural networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61, 353.

    Article  Google Scholar 

  • Golomb, D., Donner, K., Shacham, L., Shlosberg, D., Amitai, Y., Hansel, D. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Computational Biology, 3, e156.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gray, C., & McCormick, D. (1996). Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science, 274, 109.

    Article  CAS  PubMed  Google Scholar 

  • Grenier, F., Timofeev, I., Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95, 929.

    Article  Google Scholar 

  • Guckenheimer, J., Gueron, S., Harris-Warrick, R.M. (1993). Mapping the dynamics of a bursting neuron. Philosophical Transactions of the Royal Society of London, Series A, 341, 345–359.

    Article  CAS  Google Scholar 

  • Guckenheimer, J., Tien, J., Willms, A. (2005). Bifurcations in the fast dynamics of neurons: implications for bursting. In Bursting: the genesis of rhythm in the nervous system (pp. 89–122). World Scientific.

  • Harish, O., & Golomb, D. (2010). Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. Journal of Neurophysiology, 103, 2684–2699.

    Article  PubMed  Google Scholar 

  • Hindmarsh, J., & Rose, R. (1984). A model of neuronal bursting using three coupled first order differential equations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 221, 87–102.

    CAS  Google Scholar 

  • Hodgkin, A. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107, 165–181.

    CAS  PubMed  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500.

    CAS  PubMed  Google Scholar 

  • Iglesias, C., Meunier, C., Manuel, M., Timofeeva, Y., Delestrée, N., Zytnicki, D. (2011). Mixed mode oscillations in mouse spinal motoneurons arise from a low excitability state. Journal of Neuroscience, 31, 5829–5840.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT.

    Google Scholar 

  • Izhikevich, E., Desai, N., Walcott, E., Hoppensteadt, F. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neurosciences, 26, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Krupa, M., Popovic, N., Kopell, N. (2008). Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM Journal on Applied Dynamical Systems, 7, 361–420.

    Article  Google Scholar 

  • Lampl, I., & Yarom, Y. (1997). Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience, 78, 325–341.

    Article  CAS  PubMed  Google Scholar 

  • Lu, J., Sherman, D., Devor, M., Saper, C. (2006). A putative flip–flop switch for control of rem sleep. Nature, 441, 589–594.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. (2004). Membrane properties and neurotransmitter actions. In The synaptic organization of the brain. Oxford Scholarship Online Monographs (pp. 39–79).

  • Plant, R., & Kim, M. (1976). Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophysical Journal, 16, 227–244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 44, 2944–2946.

    CAS  PubMed  Google Scholar 

  • Rinzel, J. (1986). A formal classification of bursting mechanisms in excitable systems. In Proceedings of the international congress of mathematicians (Vol. 1, pp. 1578–1593).

  • Rinzel, J., Ermentrout, G. (1998). Analysis of neural excitability and oscillations. In Methods in neuronal modeling (pp. 251–292). Cambridge: MIT.

  • Robinson, P., Kim, J. (2012). Spike, rate, field, and hybrid methods for treating neuronal dynamics and interactions. Journal of Neuroscience Methods, 205, 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P., Wu, H., Kim, J. (2008). Neural rate equations for bursting dynamics derived from conductance-based equations. Journal of Theoretical Biology, 250, 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Rose, R., & Hindmarsh, J. (1989).The assembly of ionic currents in a thalamic neuron i. The three-dimensional model. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237, 267–288.

    CAS  Google Scholar 

  • Rowe, D., Robinson, P., Lazzaro, I., Powles, R., Gordon, E., Williams, L. (2005). Biophysical modeling of tonic cortical electrical activity in attention deficit hyperactivity disorder. International Journal of Neuroscience, 115, 1273–1305.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, J., & Wechselberger, M. (2008). The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos, 18, 015105–015105.

    Article  PubMed  Google Scholar 

  • Sherman, A. (1996). Contributions of modeling to understanding stimulus-secretion coupling in pancreatic beta-cells. American Journal of Physiology, Endocrinology and Metabolism, 271, E362–E372.

    CAS  Google Scholar 

  • Skarda, C., Freeman, W. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10, 161–195.

    Article  Google Scholar 

  • Steriade, M., Timofeev, I., Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.

    CAS  PubMed  Google Scholar 

  • Timofeev, I., & Steriade, M. (2004). Neocortical seizures: initiation, development and cessation. Neuroscience, 123, 299–336.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., Steriade, M. (1998). Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. Journal of Neurophysiology, 80, 1439–1455.

    Google Scholar 

  • Traub, R.D., Wong, R., Miles, R., Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66, 635–650.

    CAS  PubMed  Google Scholar 

  • Wang, X.-J., Rinzel, J., Rogawski, M.A. (1991), A model of the T-type calcium current and the low-threshold spike in thalamic neurons. Journal of Neurophysiology, 66, 839–850.

    CAS  PubMed  Google Scholar 

  • Wilson, H. (1999a). Simplified dynamics of human and mammalian neocortical neurons. Journal of Theoretical Biology, 200, 375–388.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H. (1999b). Spikes, decisions, and actions: the dynamical foundations of neuroscience. New York: Oxford University Press.

    Google Scholar 

  • Xu, J., & Clancy, C.E. (2008). Ionic mechanisms of endogenous bursting in CA3 hippocampal pyramidal neurons: a model study. PloS, ONE3, e2056.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council and the Westmead Millennium Institute.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhao.

Additional information

Action Editor: Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Kim, J.W., Robinson, P.A. et al. Low dimensional model of bursting neurons. J Comput Neurosci 36, 81–95 (2014). https://doi.org/10.1007/s10827-013-0468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0468-2

Keywords

Navigation