Journal of Computational Neuroscience

, Volume 35, Issue 2, pp 213–230 | Cite as

Linking dynamical and functional properties of intrinsically bursting neurons

  • Inés Samengo
  • Germán Mato
  • Daniel H. Elijah
  • Susanne Schreiber
  • Marcelo A. Montemurro


Several studies have shown that bursting neurons can encode information in the number of spikes per burst: As the stimulus varies, so does the length of individual bursts.Therepresented stimuli, however, vary substantially among different sensory modalities and different neurons.The goal of this paper is to determine which kind of stimulus features can be encoded in burst length, and how those features depend on the mathematical properties of the underlying dynamical system.We show that the initiation and termination of each burst is triggered by specific stimulus features whose temporal characteristsics are determined by the types of bifurcations that initiate and terminate firing in each burst. As only a few bifurcations are possible, only a restricted number of encoded features exists. Here we focus specifically on describing parabolic, square-wave and elliptic bursters. We find that parabolic bursters, whose firing is initiated and terminated by saddle-node bifurcations, behave as prototypical integrators: Firing is triggered by depolarizing stimuli, and lasts for as long as excitation is prolonged. Elliptic bursters, contrastingly, constitute prototypical resonators, since both the initiating and terminating bifurcations possess well-defined oscillation time scales. Firing is therefore triggered by stimulus stretches of matching frequency and terminated by a phase-inversion in the oscillation. The behavior of square-wave bursters is somewhat intermediate, since they are triggered by a fold bifurcation of cycles of well-defined frequency but are terminated by a homoclinic bifurcation lacking an oscillating time scale. These correspondences show that stimulus selectivity is determined by the type of bifurcations. By testing several neuron models, we also demonstrate that additional biological properties that do not modify the bifurcation structure play a minor role in stimulus encoding. Moreover, we show that burst-length variability (and thereby, the capacity to transmit information) depends on a trade-off between the variance of the external signal driving the cell and the strength of the slow internal currents modulating bursts. Thus, our work explicitly links the computational properties of bursting neurons to the mathematical properties of the underlying dynamical systems.


Bursts Neural coding Dynamical systems Bifurcations Covariance analysis 



This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, Comisíon Nacional de Energía Atómica, Agencia Nacional de Promoción Científica y Tecnológica y Universidad Nacional de Cuyo of Argentina (IS,GM), the Royal Society (IS, DHE, MAM) and BBSRC (DHE) from the UK, and the German Federal Ministry of Education (01GQ0901,01GQ1001A) and DFG (SFB 618) (SS).


  1. Agmon, A., & Connors, B.W. (1992). Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. The Journal of Neuroscience, 12(1), 319–329.PubMedGoogle Scholar
  2. Alevizos, A., Skelton, M., Karagogeos, D., Weiss, K.R., Koester, J. (1991). Possible role of bursting neuron r15 of aplysia in the control of egg-laying behavior. In K.S. Kits, H.H. Boer, J. Joose (Eds.), Molluscan neurobiology (pp. 61–66). Amsterdam: North-Holland.Google Scholar
  3. Arganda, S., Guantes, R., de Polavieja, G.G. (2007). Sodium pumps adapt spike bursting to stimulus statistics. Nature Neuroscience, 10(11), 1467–1473.PubMedCrossRefGoogle Scholar
  4. Arnold, V.I. (2008). Geometrical methods in the theory of ordinary differential equations. Berlin-Heildelberg: Springer.Google Scholar
  5. Bertram, R., Butte, M.J., Kiemel, T., Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413–439.PubMedGoogle Scholar
  6. Brown, E., Moehlis, J., Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.PubMedCrossRefGoogle Scholar
  7. Cang, J., & Isaacson, J.S. (2003). In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. The Journal of Neuroscience, 23(10), 4108–4116.PubMedGoogle Scholar
  8. Chagnac Amitai, Y., & Connors, B.W. (1989). Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. Journal of Neurophysiology, 62(5), 1149–1162.PubMedGoogle Scholar
  9. Channell, P., Fuwape, I., Neiman, A., Shilnikov, A. (2009). Variability of bursting patterns in a neuron model in the presence of noise. Journal of Computational Neuroscience, 27, 527–542. doi: 10.1007/s10827-009-0167-1.PubMedCrossRefGoogle Scholar
  10. Chay, T.R., & Cook, D.L. (1988). Endogenous bursting patterns in excitable cells. Mathematical Biosciences, 90(1–2), 139–153.CrossRefGoogle Scholar
  11. DeBusk, B.C., DeBruyn, E.J., Snider, R.K., Kabara, J.F., Bonds, A.B. (1997). Stimulus-dependent modulation of spike burst length in cat striate cortical cells. Journal of Neurophysiology, 78(1), 199–213.PubMedGoogle Scholar
  12. Ermentrout, B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM Journal on Applied Mathematics, 46, 233–253.CrossRefGoogle Scholar
  13. Eyherabide, H.G., Rokem, A., Herz, A.V., Samengo, I. (2008). Burst firing is a neural code in an insect auditory system. Frontiers in Computational Neuroscience, 2(0).Google Scholar
  14. Eyherabide, H.G., Rokem, A., Herz, A.V., Samengo, I. (2009). Bursts generate a non-reducible spike-pattern code. Frontiers in Neuroscience, 3(1), 8–14.PubMedCrossRefGoogle Scholar
  15. Gimbarzevsky, B., Miura, R.M., Puil, E. (1984). Impedance profiles of peripheral and central neurons. Canadian Journal of Physiology and Pharmacology, 62(4), 460–462.PubMedCrossRefGoogle Scholar
  16. Izhikevich, E.M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press.Google Scholar
  17. Izhikevich, E.M., & Hoppensteadt, F.C. (2004). Classification of bursting mappings. International Journal of Bifurcation and Chaos, 14, 3847–3854.CrossRefGoogle Scholar
  18. Kepecs, A., Wang, X.J., Lisman, J. (2002). Bursting neurons signal input slope. The Journal of Neuroscience, 22(20), 9053–9062.PubMedGoogle Scholar
  19. Kuske, R., & Baer, S. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. Bulletin of Mathematical Biology, 64, 447–481. doi: 10.1006/bulm2002.0279.PubMedCrossRefGoogle Scholar
  20. Marsat, G., & Pollack, G.S. (2010). The structure and size of sensory bursts encode stimulus information but only size affects behavior. Journal of Comparative Physiology. A Neuroethology, Sensory, Neural, and Behavioral Physiology, 196(4), 315–320.CrossRefGoogle Scholar
  21. Martinez-Conde, S., Macknik, S.L., Hubel, D.H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13920–13925.PubMedCrossRefGoogle Scholar
  22. Mato, G., & Samengo, I. (2008). Type i and type ii neuron models are selectively driven by differential stimulus features. Neural Computation, 20(10), 2418–2440.PubMedCrossRefGoogle Scholar
  23. Meissner, H.P., & Schmelz, H. (1974). Membrane potential of beta-cells in pancreatic islets. Pflugers Archiv: European Journal of Physiology, 351(3), 195–206.PubMedCrossRefGoogle Scholar
  24. Paninski, L. (2003). Convergence properties of three spike-triggered analysis techniques. Network, 14(3), 437–464.PubMedCrossRefGoogle Scholar
  25. Pedersen M.G., & Srensen M.P. (2006). The effect of noise on β-cell burst period. SIAM Journal on Applied Mathematics, 67(2), 530–542.CrossRefGoogle Scholar
  26. Puil, E., Gimbarzevsky, B., Miura, R.M. (1986). Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. Journal of Neurophysiology, 55(5), 995–1016.PubMedGoogle Scholar
  27. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto & M. Yamaguti (Eds.), Lecture notes in biomathematics (Vol. 71, pp. 1578–1593). Berlin: Springer-Verlag.Google Scholar
  28. Samengo, I., & Gollisch, T. (2013). Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond gaussian stimuli. Journal of Computational Neuroscience, 34(1), 137–161.PubMedCrossRefGoogle Scholar
  29. Samengo, I., & Montemurro, M.A. (2010). Conversion of phase information into a spike-count code by bursting neurons. PloS one, 5(3), e9669.PubMedCrossRefGoogle Scholar
  30. Selverston, A.I., & Miller, J.P. (1980). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. i. pyloric system. Journal of Neurophysiology, 44(6), 1102–1121.PubMedGoogle Scholar
  31. Silva, L.R., Amitai, Y., Connors, B.W. (1991). Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science, 251(4992), 432–435.PubMedCrossRefGoogle Scholar
  32. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L. (1991). Pre-botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254(5032), 726–729.PubMedCrossRefGoogle Scholar
  33. Steriade, M. (1991). Alertness, quiet sleep, dreaming. In A. Peters (Ed.), Cerebral cortex (Vol. 9, pp. 279–357). New York: Plenum.Google Scholar
  34. Steriade, M., McCormick, D.A., Sejnowski, T.J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.PubMedCrossRefGoogle Scholar
  35. Su, J., Rubin, J., Terman, D. (2004). Effects of noise on elliptic bursters. Nonlinearity, 17(1), 133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Inés Samengo
    • 1
  • Germán Mato
    • 1
  • Daniel H. Elijah
    • 2
  • Susanne Schreiber
    • 3
  • Marcelo A. Montemurro
    • 2
  1. 1.Centro Atómico Bariloche and Instituto BalseiroSan Carlos de BarilocheArgentina
  2. 2.Faculty of Life SciencesThe University of ManchesterManchesterUK
  3. 3.Department of BiologyHumboldt-University Berlin and BCCN BerlinBerlinGermany

Personalised recommendations