Skip to main content
Log in

Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Activity of neurons in the pre-Bötzinger complex (pre-BötC) within the mammalian brainstem drives the inspiratory phase of the respiratory rhythm. Experimental results have suggested that multiple bursting mechanisms based on a calcium-activated nonspecific cationic (CAN) current, a persistent sodium (NaP) current, and calcium dynamics may be incorporated within the pre-BötC. Previous modeling works have incorporated representations of some or all of these mechanisms. In this study, we consider a single-compartment model of a pre-BötC inspiratory neuron that encompasses particular aspects of all of these features. We present a novel mathematical analysis of the interaction of the corresponding rhythmic mechanisms arising in the model, including square-wave bursting and autonomous calcium oscillations, which requires treatment of a system of differential equations incorporating three slow variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams, W.B., & Benson, J.A. (1985). The generation and modulation of endogenous rhythmicity in the aplysia bursting pacemaker neurone r15. Progress in Biophysics and Molecular Biology, 46(1), 1–49.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, R., Sherman, A., Satin, L.S. (2010). Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Advances in Experimental Medicine and Biology, 654, 261–279.

    Article  CAS  PubMed  Google Scholar 

  • Best, J., Borisyuk, A., Rubin, J., Terman, D., Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal on Applied Dynamical Systems, 4(4), 1107–1139.

    Article  Google Scholar 

  • Butera, R., Rubin, J., Terman, D., Smith, J. (2005). Oscillatory bursting mechanisms in respiratory pacemaker neurons and networks. In S. Coombes & P. Bressloff (Eds.), Bursting: the genesis of rhythm in the nervous system. Singapore: World Scientific.

    Google Scholar 

  • Butera, R.J. Jr., Clark, J.W. Jr., Canavier, C.C., Baxter, D.A., Byrne, J.H. (1995). Analysis of the efects of modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium dependent systems. Journal of Computational Neuroscience, 2(1), 19–44.

    Article  PubMed  Google Scholar 

  • Butera, R.J. Jr., Rinzel, J., Smith, J.C. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382–397.

    Google Scholar 

  • Chay, T.R., & Keizer, J. (1983). Minimal model for membrane oscillations in the pancreatic beta-cell. Biophysical Journal, 42(2), 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Crowder, E.A., Saha, M.S., Pace, R.W., Zhang, H., Prestwich, G.D., Del Negro, C.A. (2007). Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse pre-Bötzinger complex. The Journal of Physiology 582(3), 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  • Csercsik, D., Farkas, I., Hrabovszky, E., Liposits, Z. (2012). A simple integrative electrophysiological model of bursting GnRH neurons. Journal of Computational Neuroscience, 32(1), 119–136.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Hayes, J.A., Rekling, J.C. (2011). Dendritic calcium activity precedes inspiratory bursts in pre-Bötzinger complex neurons. The Journal of Neuroscience, 31(3), 1017–1022.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Koshiya, N., Butera, R.J., Smith, J.C. (2002a). Persistent sodium current, membrane properties and bursting behavior of pre-Bötzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88(5), 2242–2250.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Morgado-Valle, C., Feldman, J.L. (2002b). Respiratory rhythm: an emergent network property? Neuron, 34(5), 821–830.

    Article  PubMed  Google Scholar 

  • Del Negro, C.A., Morgado-Valle, C., Hayes, J.A., Mackay, D.D., Pace, R.W., Crowder, E.A., Feldman, J.L. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. The Journal of Neuroscience, 25(2), 446–453.

    Article  PubMed  Google Scholar 

  • Doi, A., & Ramirez, J.M. (2008). Neuromodulation and the orchestration of the respiratory rhythm. Respiratory Physiology & Neurobiology, 164(1–2), 96–104.

    Article  CAS  Google Scholar 

  • Doi, A., & Ramirez, J.M. (2010). State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. The Journal of Neuroscience, 30(24), 8251–8262.

    Article  CAS  PubMed  Google Scholar 

  • Duan, W., Lee, K., Herbison, A.E., Sneyd, J. (2011). A mathematical model of adult gnrh neurons in mouse brain and its bifurcation analysis. Journal of Theoretical Biology, 276(1), 22–34.

    Article  CAS  PubMed  Google Scholar 

  • Dunmyre, J.R., Del Negro, C.A., Rubin, J.E. (2011). Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. Journal of Computational Neuroscience, 31(2), 305–328.

    Article  PubMed  Google Scholar 

  • Errington, A.C., Renger, J.J., Uebele, V.N., Crunelli, V. (2010). State-dependent firing determines intrinsic dendritic ca2+ signaling in thalamocortical neurons. The Journal of Neuroscience 30(44), 14843–14853.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, J.L., & Del Negro, C.A. (2006). Looking for inspiration: new perspectives on respiratory rhythm. Nature Reviews Neuroscience, 7(3), 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, J.L., & Smith, J.C. (1989). Cellular mechanisms underlying modulation of breathing pattern in mammals. Annals of the New York Academy of Sciences, 563, 114–130.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, P.A., & Li, Y.X. (2009). An integrated model of electrical spiking, bursting, and calcium oscillations in gnrh neurons. Biophysical Journal, 96(11), 4514–4524.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, S.W., Errington, A., Lorincz, M.L., Kékesi, K.A., Juhász, G., Orbán, G., Cope, D.W., Crunelli, V. (2008). Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons. Brain Research, 1235, 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S.M., Smith, J.C., Funk, G.D., Feldman, J.L. (1994). Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. Journal of Neurophysiology, 72(6), 2598–2608.

    CAS  PubMed  Google Scholar 

  • Koizumi, H., & Smith, J.C. (2008). Persistent Na+ and K+ - dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. The Journal of Neuroscience, 28(7), 1773–1785.

    Article  CAS  PubMed  Google Scholar 

  • Mironov, S.L. (2008). Metabotropic glutamate receptors activate dendritic calcium waves and trpm channels which drive rhythmic respiratory patterns in mice. The Journal of Physiology, 586(9), 2277–2291.

    Article  CAS  PubMed  Google Scholar 

  • Pace, R.W., Mackay, D.D., Feldman, J.L., Del Negro, C.A. (2007a). Inspiratory bursts in the pre-Bözinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. The Journal of Physiology 582(1), 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Pace, R.W., Mackay, D.D., Feldman, J.L., Del Negro, C.A. (2007b). Role of persistent sodium current in mouse pre-Bötzinger complex neurons and respiratory rhythm generation. The Journal of Physiology, 580(2), 485–496.

    Article  CAS  PubMed  Google Scholar 

  • Paton, J.F., Abdala, A.P., Koizumi, H., Smith, J.C., St-John, W.M. (2006). Respiratory rhythm generation during gasping depends on persistent sodium current. Nature Neuroscience, 9(3), 311–313.

    Article  CAS  PubMed  Google Scholar 

  • Peña, F., Parkis, M.A., Tryba, A.K., Ramirez, J.M. (2004). Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron, 43(1), 105–117.

    Article  PubMed  Google Scholar 

  • Peña, F., & Ramirez, J.M. (2002). Endogenous activation of serotonin-2a receptors is required for respiratory rhythm generation in vitro. The Journal of Neuroscience, 22(24), 11,055–11,064.

    Google Scholar 

  • Ptak, K., Zummo, G.G., Alheid, G.F., Tkatch, T., Surmeier, D.J., McCrimmon, D.R. (2005). Sodium currents in medullary neurons isolated from the pre-Bötzinger complex region. The Journal of Neuroscience, 25(21), 5159–5170.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, J.M., Koch, H., Garcia, A.J., Doi, A., Zanella, S. (2011). The role of spiking and bursting pacemakers in the neuronal control of breathing. Journal of Biological Physics, 37(3), 241–261.

    Article  PubMed  Google Scholar 

  • Rekling, J.C., & Feldman, J.L. (1998). PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annual Review of Physiology, 60, 385–405.

    Article  CAS  PubMed  Google Scholar 

  • Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In Gleason, A. (Ed.), In: Proceedings of the international congress of mathematicians. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Rubin, J.E., Hayes, J.A., Mendenhall, J.L., Del Negro, C.A. (2009). Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2939–2944.

    Article  CAS  PubMed  Google Scholar 

  • Rybak, I.A., Abdala, A.P., Markin, S.N., Paton, J.F., Smith, J.C. (2007). Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Progress in Brain Research, 165, 201–220.

    Article  PubMed  Google Scholar 

  • Saftenku, E.E. (2012). Models of calcium dynamics in cerebellar granule cells. Cerebellum, 11(1), 85–101.

    Article  CAS  PubMed  Google Scholar 

  • Shao, X.M., & Feldman, J.L. (2000). Acetylcholine modulates respiratory pattern: effects mediated by m3-like receptors in preBötzinger complex inspiratory neurons. Journal of Neurophysiology, 83(3), 1243–1252.

    CAS  PubMed  Google Scholar 

  • Smith, J.C., Butera, R.J., Koshiya, N., Del Negro, C., Wilson, C.G., Johnson, S.M. (2000). Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respiration Physiology, 122(2–3), 131–147.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L. (1991). Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254(5032), 726–729.

    Article  CAS  PubMed  Google Scholar 

  • Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. Journal of Nonlinear Science, 2(2), 135–182.

    Article  Google Scholar 

  • Thoby-Brisson, M., & Ramirez, J.M. (2001). Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. Journal of Neurophysiology, 86(1), 104–112.

    CAS  PubMed  Google Scholar 

  • Topolnik, L. (2012). Dendritic calcium mechanisms and long-term potentiation in cortical inhibitory interneurons. The European Journal of Neuroscience, 35(4), 496–506.

    Article  PubMed  Google Scholar 

  • Toporikova, N., & Butera, R.J. (2011). Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. Journal of Computational Neuroscience, 30(3), 515–528.

    Article  PubMed  Google Scholar 

  • Viemari, J.C., Garcia, A.J. 3rd, Doi, A., Ramirez, J.M. (2011). Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro. The European Journal of Neuroscience, 33(12), 2228–2237.

    Article  PubMed  Google Scholar 

  • Viemari, J.C., & Ramirez, J.M. (2006). Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. Journal of Neurophysiology, 95(4), 2070–2082.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation award DMS 1021701. The authors thank Natalia Toporikova for many helpful conversations relating to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choongseok Park.

Additional information

Action Editor: David Terman

Appendix: Return maps

Appendix: Return maps

We first computed the durations of the active phase and silent phase by treating hp as a parameter. With initial condition hp 0, we integrated the averaged equations of hp (Eqs. (11) and (12)) over the silent phase duration and the active phase duration sequentially. The value of hp at the end of active phase, F (hp 0) in Eq. (17), is the map that we used.

For quick reference, we first rewrite the governing equation of hp,

$$ \frac{d \,hp}{dt} = \frac{hp_{\infty}(V) - hp}{\tau_{h} (V)} = \frac{hp_{\infty}(V)}{\tau_{h} (V)} - \frac{1}{\tau_{h} (V)} hp. $$
(10)

We regard hp as a parameter to compute the duration of the silent phase, say SP(hp), and the active phase, say AP(hp), of the bursting solution for each fixed hp between 0.2 and 0.8. With hp fixed, the activity of the solution of the full system is purely driven by the dendritic Ca 2 +  dynamics and the projection of the solution onto (\(g_{\rm CAN _{Tot}}\), hp)-space is a horizontal line segment. Now we average the right-hand side of Eq. (10) over time duration AP(hp). The averaged equation over the active phase is given as

$$ \begin{array}{rll} \frac{d \,hp^{A}_{av}}{dt}&=& \left [ \frac{1}{T^A_F-T^A_I}\int_{T^A_I}^{T^A_F} \frac{hp_{\infty}(V)}{\tau_{h}(V)} dt \right ]\\ && - \left [\frac{1}{T^A_F-T^A_I}\int_{T^A_I}^{T^A_F} \frac{1}{\tau_{h}(V)} dt \right ] hp^A_{av} \end{array} $$
(11)

where \(T^A_I (T^A_F)\) denotes the initial (final) time of the active phase AP(hp). Since τ h (V) is sensitive to the range of voltage V within silent phase, we also average the right-hand side of Eq. (10) over time duration SP(hp) to get

$$ \begin{array}{rll} \frac{d \,hp^{S}_{av}}{dt}&=& \left [ \frac{1}{T^S_F-T^S_I}\int_{T^S_I}^{T^S_F} \frac{hp_{\infty}(V)}{\tau_{h}(V)} dt \right ]\\ &&- \left [\frac{1}{T^S_F-T^S_I}\int_{T^S_I}^{T^S_F} \frac{1}{\tau_{h}(V)} dt \right ] hp^S_{av} \end{array} $$
(12)

where \(T^S_I (T^S_F)\) denotes the initial (final) time of the silent phase SP(hp). The averaged hp variable over the active phase, \(hp^A_{av}\), has a tendency to approach the fixed point of Eq. (11), call it FP A (hp).

$${\rm FP}_A(hp) = \int_{T^A_I}^{T^A_F} \frac{hp_{\infty}(V)}{\tau_{h}(V)} dt / \int_{T^A_I}^{T^A_F} \frac{1}{\tau_{h}(V)} dt $$
(13)

Similarly, \(hp^S_{av}\) tends to approach FP S (hp), which is given as

$${\rm FP}_S(hp) = \int_{T^S_I}^{T^S_F} \frac{hp_{\infty}(V)}{\tau_{h}(V)} dt / \int_{T^S_I}^{T^S_F} \frac{1}{\tau_{h}(V)} dt $$
(14)

We computed FP A (hp) and FP S (hp) over hp values from 0.2 to 0.8 with stepsize 0.05 and [IP3] values from 0.95 to 1.4 with stepsize 0.01. The results are shown in Fig. 13(a), where the solid curves correspond to the mean values of FP A (lower curve) and FP S (upper curve) averaged over the [IP3] range and the standard deviation from this mean over the range of [IP3] is indicated with error bars. From the small size of the error bars, we see that the mean values of FP A and FP S show only slight dependence on [IP3] values. This observation is consistent with our earlier claim that the hp values at transitions between phases are relatively independent of [IP3].

Fig. 13
figure 13

Return maps to estimate the minimal values of hp over bursting solutions. (a) Fixed points of averaged Eqs. (11) and (12), FP A (hp) and FP S (hp), are computed over hp values from 0.2 to 0.8 and [IP3] from 0.95 to 1.4. Upper (lower, resp.) solid curve with error bars denote the mean value of FP S (hp) (FP A (hp), resp.) averaged over the [IP3] range and standard deviation from this mean. (b) Examples of the return map F(hp) when IP3 = 1 (black, upper) and 1.3 (black, lower), relative to the identity line (gray). (c) Collection of stable fixed points of the return map (Eq. (17)) (gray) with the results from numerical simulation (black)

Now, suppose that the silent phase begins at t = 0 with initial condition hp 0. Let F S (hp 0) be the value of hp at the end of the silent phase predicted by integrating the averaged equation of hp for the duration of silent phase, SP(hp 0). Then we have

$$ \begin{array}{rll} {\rm F}_S(hp_0) &=& {\rm FP}_S(hp_0) \\&&+\, (hp_0 - {\rm FP}_S(hp_0))\exp(-k_S{\rm SP}(hp_0)) \end{array} $$
(15)

where

$$ k_S=\frac{1}{T^S_F-T^S_I}\int_{T^S_I}^{T^S_F} \frac{1}{\tau_{h}(V)} dt. $$
(16)

Now, we integrate Eq. (11) again for the duration of active phase, AP(hp 0), with initial condition F S (hp 0). Let F (hp 0) be the resulting value of hp, which is the desired map and given as

$$ \begin{array}{rll} {\rm F}(hp_0)&=& {\rm FP}_A(hp_0) + ({\rm F}_S(hp_0) \\ &&-\, {\rm FP}_A(hp_0))\exp(-k_A{\rm AP}(hp_0)) \end{array} $$
(17)

where

$$ k_A=\frac{1}{T^A_F-T^A_I}\int_{T^A_I}^{T^A_F} \frac{1}{\tau_{h}(V)} dt $$
(18)

Two examples of maps with a line of identity (gray diagonal line) are shown in Fig. 13(b) when [IP3] = 1 (upper) and 1.3 (lower). In each map, there is a stable fixed point. Figure 13(c) shows the collection of these stable fixed points (gray), which matches well with the numerical results (black). Thus, Eq. (17) captures the decrease in the hp value where the balance of silent and active phase durations occurs, specifically in the hp value at the end of the active phase, as [IP3] increases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C., Rubin, J.E. Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons. J Comput Neurosci 34, 345–366 (2013). https://doi.org/10.1007/s10827-012-0425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0425-5

Keywords

Navigation