Journal of Computational Neuroscience

, Volume 34, Issue 2, pp 273–283 | Cite as

Information coding in a laminar computational model of cat primary visual cortex

  • Gleb Basalyga
  • Marcelo A. Montemurro
  • Thomas Wennekers


Neural populations across cortical layers perform different computational tasks. However, it is not known whether information in different layers is encoded using a common neural code or whether it depends on the specific layer. Here we studied the laminar distribution of information in a large-scale computational model of cat primary visual cortex. We analyzed the amount of information about the input stimulus conveyed by the different representations of the cortical responses. In particular, we compared the information encoded in four possible neural codes: (1) the information carried by the firing rate of individual neurons; (2) the information carried by spike patterns within a time window; (3) the rate-and-phase information carried by the firing rate labelled by the phase of the Local Field Potentials (LFP); (4) the pattern-and-phase information carried by the spike patterns tagged with the LFP phase. We found that there is substantially more information in the rate-and-phase code compared with the firing rate alone for low LFP frequency bands (less than 30 Hz). When comparing how information is encoded across layers, we found that the extra information contained in a rate-and-phase code may reach 90 % in Layer 4, while in other layers it reaches only 60 %, compared to the information carried by the firing rate alone. These results suggest that information processing in primary sensory cortices could rely on different coding strategies across different layers.


Information coding Primary visual cortex Cortical microcircuit Phase-of-firing information Phase coding 



This work was supported by EPSRC research grant EP/C010841/1.


  1. Adrian, E. (1928). The basis of sensations. New York: Norton.Google Scholar
  2. Basalyga, G., & Wennekers, T. (2009). Large-scale computational model of cat primary visual cortex. BMC Neuroscience, 10(Suppl 1), p358.Google Scholar
  3. Belitski, A., et al. (2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. Journal of Neuroscience, 28(22), 5696–5709.CrossRefPubMedGoogle Scholar
  4. Berens, P., et al. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2(2), 2.PubMedGoogle Scholar
  5. Bialek, W., et al. (1991). Reading a neural code. Science, 252(5014), 1854–1857.CrossRefPubMedGoogle Scholar
  6. Brette, R., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.CrossRefPubMedGoogle Scholar
  7. Buzas, P., et al. (2006). Model-based analysis of excitatory lateral connections in the visual cortex. Journal of Comparative Neurology, 499(6), 861–881.CrossRefPubMedGoogle Scholar
  8. Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge, UK: Cambridge University Press.Google Scholar
  9. Cover, T.M., & Thomas, J.A. (1991). Elements of information theory. New York: Wiley.CrossRefGoogle Scholar
  10. de Ruyter van Steveninck, R.R., et al. (1997). Reproducibility and variability in neural spike trains. Science, 275(5307), 1805–1808.CrossRefPubMedGoogle Scholar
  11. DeAngelis, G.C., et al. (1999). Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. Journal of Neuroscience, 19(10), 4046–4064.PubMedGoogle Scholar
  12. Destexhe, A., et al. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, 38, 555–563.CrossRefGoogle Scholar
  13. Destexhe, A., et al. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience, 16(1), 169–185.PubMedGoogle Scholar
  14. Destexhe, A., et al. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience, 18(10), 3574–3588.PubMedGoogle Scholar
  15. Engel, A.K., et al. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2(7), 588–606.CrossRefPubMedGoogle Scholar
  16. Gilbert, C.D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology, 268(2), 391–421.PubMedGoogle Scholar
  17. Grossberg, S., & Versace, M. (2008). Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Research, 1218(4), 278–312.CrossRefPubMedGoogle Scholar
  18. Haeusler, S., & Maass, W. (2007). A statistical analysis of information processing properties of lamina-specific cortical microcircuit models. Cerebral Cortex, 17(1), 149–162.CrossRefPubMedGoogle Scholar
  19. Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.CrossRefPubMedGoogle Scholar
  20. Hill, S., & Tononi, G. (2004). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93(3), 1671–1698.CrossRefPubMedGoogle Scholar
  21. Hines, M.L., & Carnevale, N.T. (2008). Translating network models to parallel hardware in NEURON. Journal of Neuroscience Methods, 169(2), 425–455.CrossRefPubMedGoogle Scholar
  22. Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMedGoogle Scholar
  23. Holmgren, C., et al. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.CrossRefPubMedGoogle Scholar
  24. Holt, G.R., & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience, 6(2), 169–184.CrossRefPubMedGoogle Scholar
  25. Izhikevich, E.M., & Edelman, G.M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science (USA), 105(9), 3593–3598.CrossRefGoogle Scholar
  26. Katzner, S., et al. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41.CrossRefPubMedGoogle Scholar
  27. Kayser, C., et al. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597–608.CrossRefPubMedGoogle Scholar
  28. Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Sciences, 93(12), 6112–6117.CrossRefGoogle Scholar
  29. Lindén, H., et al. (2011). Modeling the spatial reach of the LFP. Neuron, 72(5), 859–872.CrossRefPubMedGoogle Scholar
  30. Logothetis, N.K., et al. (2007). In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron, 55(5), 809–23.CrossRefPubMedGoogle Scholar
  31. Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2), 153–160.CrossRefPubMedGoogle Scholar
  32. Mazzoni, A., et al. (2011). Cortical dynamics during naturalistic sensory stimulations: experiments and models. Journal of Physiology Paris, 105(1–3), 2–15.CrossRefGoogle Scholar
  33. Mazzoni, A., et al. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computational Biology, 4(12), e1000239.CrossRefPubMedGoogle Scholar
  34. Migliore, M., et al. (2006). Parallel network simulations with NEURON. Journal of Computational Neuroscience, 21(1), 119–129.CrossRefPubMedGoogle Scholar
  35. Miikkulainen, R., et al. (2005). Computational maps in the visual cortex. Berlin, New York: Springer.Google Scholar
  36. Montemurro, M.A., et al. (2007a). Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. Journal of Neurophysiology, 98(4), 1871–1882.CrossRefPubMedGoogle Scholar
  37. Montemurro, M.A., et al. (2007b). Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Neural Computation, 19(11), 2913–2957.CrossRefPubMedGoogle Scholar
  38. Montemurro, M.A., et al. (2008). Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current Biology, 18(5), 375–380.CrossRefPubMedGoogle Scholar
  39. Nordlie, E., et al. (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5(8), e1000456.CrossRefPubMedGoogle Scholar
  40. O’Keefe, J., & Recce, M.L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330.CrossRefPubMedGoogle Scholar
  41. Onat, S., et al. (2011). Natural scene evoked population dynamics across cat primary visual cortex captured with voltage-sensitive dye imaging. Cerebral Cortex, 21(11), 2542–2554.CrossRefPubMedGoogle Scholar
  42. Panzeri, S., et al. (2007). Correcting for the sampling bias problem in spike train information measures. Journal of Neurophysiology, 98(3), 1064–1072.CrossRefPubMedGoogle Scholar
  43. Pettersen, K.H., & Einevoll, G.T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94(3), 784–802.CrossRefPubMedGoogle Scholar
  44. Pospischil, M., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4–5), 427–441.CrossRefPubMedGoogle Scholar
  45. Protopapas, A.D., et al. (1999). Simulating large networks of neurons. In C. Koch, & I. Sefev (Eds.), Methods in neuronal modeling from ions to networks (chapter 12, pp. 461–498). Cambridge, MA: MIT Press.Google Scholar
  46. Rasch, M.J., et al. (2011). Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. Journal of Neurophysiology, 105(2), 757–778.CrossRefPubMedGoogle Scholar
  47. Salinas, E., & Sejnowski, T.J. (2001). Correlated neuronal activity and the flow of neural information. Nature Review Neuroscience, 2(8), 539–550.CrossRefGoogle Scholar
  48. Shadlen, M.N., & Newsome, W.T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.PubMedGoogle Scholar
  49. Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423, 623–656.Google Scholar
  50. Sillito, A.M., & Jones, H.E. (2002). Corticothalamics interactions in the transfer of visual information. Philosophical Transactions of the Royal Society London B, 357(1428), 1739–1752.CrossRefGoogle Scholar
  51. Skottun, B.C., et al. (1991). Classifying simple and complex cells on the basis of response modulation. Vision Research, 31(7–8), 1078–1086.CrossRefGoogle Scholar
  52. Strong, S.P., et al. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80(1), 197–200.CrossRefGoogle Scholar
  53. Szymanski, F.D., et al. (2011). The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex. Journal of Neuroscience, 31(44), 15787–15801.CrossRefPubMedGoogle Scholar
  54. Thomson, A.M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Frontiers in Neurocsience, 1(1), 19–42.CrossRefGoogle Scholar
  55. Tiesinga, P., et al. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 9(2), 97–107.CrossRefPubMedGoogle Scholar
  56. Traub, R.D., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93(4), 2194–2232.CrossRefPubMedGoogle Scholar
  57. Traub, R.D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  58. Tsodyks, M., et al. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.CrossRefPubMedGoogle Scholar
  59. Tsodyks, M., et al. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal of Neuroscience, 20(1), 1–5.Google Scholar
  60. Ursino, M., & Cara, G.E.L. (2006). Travelling waves and EEG patterns during epileptic seizure: analysis with an integrate-and-fire neural network. Journal of Theoretical Biology, 242(1), 171–187.CrossRefPubMedGoogle Scholar
  61. Wohrer, A., & Kornprobst, P. (2009). Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience, 26(2), 219–249.CrossRefPubMedGoogle Scholar
  62. Xing, D., et al. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29(37), 11540–11549.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gleb Basalyga
    • 1
  • Marcelo A. Montemurro
    • 2
  • Thomas Wennekers
    • 1
  1. 1.Plymouth UniversityPlymouthUK
  2. 2.University of ManchesterManchesterUK

Personalised recommendations