Journal of Computational Neuroscience

, Volume 33, Issue 3, pp 533–545 | Cite as

Quantitative prediction of vasopressin secretion using a computational population model of rat magnocellular neurons

  • Louis Nadeau
  • Didier Mouginot


The goal of this study was to create a realistic and quantitative simulation of vasopressin (AVP) secretion under iso-osmotic and short-term challenged plasma osmolality. The relationship between AVP concentration ([AVP]) and plasma osmolality was computed using a sophisticated and integrated model that chronologically simulates (1) the overall firing rate of the hypothalamus’ magnocellular neuronal (MCN) population, (2) the propagation of the spike activity down the axons, (3) the fatigue and facilitation mechanisms of AVP release at the axon terminals and (4) the [AVP] pharmacodynamics based on the trains of AVP release. This global simulation predicted that the differential MCN sensitivity to dynorphin would be the most critical mechanism underlying the individual variability of MCN firing behaviors (silence, irregular, phasic and continuous firing patterns). However, at the level of the MCN population, the simulation predicted that the dynorphin factor must be combined with the distribution of the resting membrane potentials among the MCNs to obtain a realistic overall firing rate in response to a change in osmolality. Moreover, taking advantage of the integrated model, the simulation predicted that the selective removal of the frequency-dependent facilitation of AVP secretion has a major impact on the overall [AVP]-to-osmolality relationship (mean absolute change of 2.59 pg/ml); the action potential propagation failure, while critical, has a smaller quantitative impact on the overall [AVP] (0.58 pg/ml). The present integrated model (from a single MCN to a quantitative plasma [AVP]) improves our knowledge of the mechanisms underlying overall MCN firing and AVP excitation-secretion coupling.


Hydromineral homeostasis Supraoptic nucleus Dynorphin Kappa-opioid receptor Excitation-secretion coupling Mathematical model 



This project was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes for Health Research (CIHR; MOP-178002). LN received a scholarship from the NSERC (ESD3-334440-2006).

The authors would like to thank Drs. Colin Brown (University of Otago, Dunedin, New Zealand) and Charles Bourque (McGill University, Montreal, Canada) for their valuable comments and suggestions on the preliminary results of the study.

Supplementary material

10827_2012_399_MOESM1_ESM.pdf (45 kb)
Online Resource 1 (PDF 45 kb)
10827_2012_399_MOESM2_ESM.pdf (163 kb)
Online Resource 2 (PDF 163 kb)
10827_2012_399_MOESM3_ESM.pdf (157 kb)
Online Resource 3 (PDF 156 kb)
10827_2012_399_MOESM4_ESM.pdf (241 kb)
Online Resource 4 (PDF 240 kb)
10827_2012_399_MOESM5_ESM.pdf (53 kb)
Online Resource 5 (PDF 52 kb)
10827_2012_399_MOESM6_ESM.pdf (76 kb)
Online Resource 6 (PDF 76 kb)


  1. Bicknell, R. J. (1988). Optimizing release from peptide hormone secretory nerve terminals. Journal of Experimental Biology, 139, 51–65.PubMedGoogle Scholar
  2. Bicknell, R. J., Brown, D., Chapman, C., Hancock, P. D., & Leng, G. (1984). Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis. Journal of Physiology (London), 348, 601–613.Google Scholar
  3. Bielefeldt, K., & Jackson, M. B. (1993). A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Journal of Neurophysiology, 70, 284–298.PubMedGoogle Scholar
  4. Bondy, C. A., Gainer, H., & Russell, J. T. (1987). Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis. Neuroendocrinology, 46, 258–267.PubMedCrossRefGoogle Scholar
  5. Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Progress in Brain Research, 119, 59–76.PubMedCrossRefGoogle Scholar
  6. Bourque, C. W., & Renaud, L. P. (1991). Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Research, 540, 349–352.PubMedCrossRefGoogle Scholar
  7. Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal of Physiology (London), 271, 253–271.Google Scholar
  8. Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. Journal of Neuroscience, 18, 9480–9488.PubMedGoogle Scholar
  9. Brown, C. H., Ruan, M., Scott, V., Tobin, V. A., & Ludwig, M. (2008). Multi-factorial somato-dendritic regulation of phasic spike discharge in vasopressin neurons. Progress in Brain Research, 170, 219–228.PubMedCrossRefGoogle Scholar
  10. Cazalis, M., Dayanithi, G., & Nordmann, J. J. (1985). The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. Journal of Physiology (London), 369, 45–60.Google Scholar
  11. Clayton, T. F., Murray, A. F., & Leng, G. (2010). Modeling the in vivo spike activity of phasically-firing vasopressin cells. Journal of Neuroendocrinology, 22, 1290–1300.PubMedCrossRefGoogle Scholar
  12. Czaczkes, J. W., & Kleeman, C. R. (1964). The effects of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. Journal of Clinical Investigation, 43, 1649–1658.PubMedCrossRefGoogle Scholar
  13. Dunn, F. L., Brennan, T. J., Nelson, A. E., & Robertson, G. L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219.PubMedCrossRefGoogle Scholar
  14. Dyball, R. E., Grossmann, R., Leng, G., & Shibuki, K. (1988). Spike propagation and conduction failure in the rat neural lobe. Journal of Physiology (London), 401, 241–256.Google Scholar
  15. Hobbach, H., Hurth, S., Jost, D., & Racké, K. (1988). Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. Journal of Physiology (London), 397, 539–554.Google Scholar
  16. Iremonger, K. J., & Bains, J. S. (2007). Integration of asynchronously released quanta prolongs the postsynaptic spike window. Journal of Neuroscience, 27, 6684–6691.PubMedCrossRefGoogle Scholar
  17. Jackson, M. B., Konnerth, A., & Augustine, G. J. (1991). Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 88, 380–384.PubMedCrossRefGoogle Scholar
  18. Komandantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.CrossRefGoogle Scholar
  19. Leng, G., & Ludwig, M. (2008). Neurotransmitters and peptides: whispered secrets and public announcements. Journal of Physiology (London), 586, 5625–5632.CrossRefGoogle Scholar
  20. Leng, G., Brown, C., Sabatier, N., & Scott, V. (2008a). Population dynamics in vasopressin cells. Neuroendocrinology, 88, 160–172.PubMedCrossRefGoogle Scholar
  21. Leng, G., Onaka, T., Caquineau, C., Sabatier, N., Tobin, V. A., & Takayanagi, Y. (2008b). Oxytocin and appetite. Progress in Brain Research, 170, 137–151.PubMedCrossRefGoogle Scholar
  22. Mason, W. T. (1983). Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro. Proceedings of the Royal Society B: Biological Sciences, 217, 141–161.CrossRefGoogle Scholar
  23. Morris, J. F. (1976). Hormone storage in individual neurosecretory granules of the pituitary gland: a quantitative ultrastructural approach to hormone storage in the neural lobe. Journal of Endocrinology, 68, 209–224.PubMedCrossRefGoogle Scholar
  24. Nadeau, L., & Mouginot, D. (2011). New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. Journal of Computational Neuroscience, 31, 441–451.PubMedCrossRefGoogle Scholar
  25. Nadeau, L., Arbour, D., & Mouginot, D. (2010). Computational simulation of vasopressin secretion using a rat model of the water and electrolyte homeostasis. BMC Physiology, 10, 17.PubMedCrossRefGoogle Scholar
  26. Nordmann, J. J., & Stuenkel, E. L. (1986). Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat. The Journal of Physiology (London), 380, 521–539.Google Scholar
  27. Poulain, D. A., Brown, D., & Wakerley, J. (1988). Statistical analysis of patterns of electrical activity in vasopressin and oxytocin-secreting neurones. In: Pulsatility in neuroendocrine systems (ed. Leng G), 119–154. CRC Press, Boca Raton, FL, U.S.AGoogle Scholar
  28. Richard, D., & Bourque, C. W. (1995). Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. The Journal of Physiology (London), 489, 567–577.Google Scholar
  29. Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. Journal of Neuroscience, 24, 4818–4831.PubMedCrossRefGoogle Scholar
  30. Scott, V., Bishop, V. R., Leng, G., & Brown, C. H. (2009). Dehydration-induced modulation of kappa-opioid inhibition of vasopressin neurone activity. Journal of Physiology (London), 587, 5679–5689.CrossRefGoogle Scholar
  31. Verbalis, J. G. (2003). Disorders of body water homeostasis. Best Practice & Research Clinical Endocrinololgy & Metabolism, 17, 471–503.CrossRefGoogle Scholar
  32. Wakerley, J. B., Poulain, D. A., & Brown, D. (1978). Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Research, 148, 425–440.PubMedCrossRefGoogle Scholar
  33. Wakerley, J. B., Poulain, D. A., Dyball, R. E., & Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258, 82–84.PubMedCrossRefGoogle Scholar
  34. Walters, J. K., & Hatton, G. I. (1974). Supraoptic neuronal activity in rats during five days of water deprivation. Physiology & Behavior, 13, 661–667.CrossRefGoogle Scholar
  35. Weisinger, R. S., Burns, P., Eddie, L. W., & Wintour, E. M. (1993). Relaxin alters the plasm a osmolality-arginine vasopressin relationship in the rat. Journal of Endocrinology, 137, 505–510.PubMedCrossRefGoogle Scholar
  36. Wilson, K. C., Weitzman, R. E., & Fisher, D. A. (1978). Arginine vasopressin metabolism in dogs. II. Modeling and system analysis. American Journal of Physiology, 235, E598–605.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre de recherche du CHUQ (CHUL), NeurosciencesQuébecCanada
  2. 2.Faculté de médecineUniversité LavalQuébecCanada
  3. 3.CRCHULQuébecCanada

Personalised recommendations