Journal of Computational Neuroscience

, Volume 32, Issue 2, pp 253–280 | Cite as

After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model

  • Jesse Palma
  • Massimiliano Versace
  • Stephen Grossberg


Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970’s how, in rate-based recurrent on-center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.


Sigmoid signal Spiking model After-hyperpolarization current Acetylcholine modulation Recurrent network Calcium-activated potassium channel Vigilance Adaptive Resonance Theory 



J.P., M.V., and S.G. were supported in part by CELEST, an NSF Science of Learning Center (NSF SBE-0354378). J.P. and S.G. were supported by the SyNAPSE program of DARPA (HR0011-09-C-0001).


  1. Abel, H. J., Lee, J. C. F., Callaway, J. C., & Foehring, R. C. (2004). Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons. Journal of Neurophysiology, 91(1), 324–335.PubMedCrossRefGoogle Scholar
  2. Akins, P. T., Surmeier, D. J., & Kitai, S. T. (1990). Muscarinic modulation of a transient k + conductance in rat neostriatal neurons. Nature, 344, 240–242.PubMedCrossRefGoogle Scholar
  3. Anwar, H., Hong, S., & De Schutter, E. (2010). Controlling ca(2+)-activated K (+) channels with models of Ca (2+) buffering in purkinje cells. Cerebellum. England: London.Google Scholar
  4. Arnold, H. M., Burk, J. A., Hodgson, E. M., Sarter, M., & Bruno, J. P. (2002). Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience, 114(2), 451–460.PubMedCrossRefGoogle Scholar
  5. Atri, A., Sherman, S., Norman, K. A., Kirchhoff, B. A., Nicolas, M. M., Greicius, M. D., et al. (2004). Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behavioral Neuroscience, 118(1), 223–236.PubMedCrossRefGoogle Scholar
  6. Ballaz, S. J. (2009). Differential novelty detection in rats selectively bred for novelty-seeking behavior. Neuroscience Letters, 461(1), 45–48.PubMedCrossRefGoogle Scholar
  7. Barkai, E., & Hasselmo, M. E. (1994). Modulation of the input/output function of rat piriform cortex pyramidal cells. Journal of Neurophysiology, 72(2), 644–658.PubMedGoogle Scholar
  8. Bordey, A., Sontheimer, H., & Trouslard, J. (2000). Muscarinic activation of BK channels induces membrane oscillations in glioma cells and leads to inhibition of cell migration. Journal of Membrane Biology, 176(1), 31–40.PubMedCrossRefGoogle Scholar
  9. Bosking, W. H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in the tree shrew striate cortex. Journal of Neuroscience, 7, 2112–2127.Google Scholar
  10. Botly, L. C., & De Rosa, E. (2007). Cholinergic influences on feature binding. Behavioral Neuroscience, 121(2), 264–276.PubMedCrossRefGoogle Scholar
  11. Botly, L. C., & De Rosa, E. (2009). Cholinergic deafferentation of the neocortex using 192 igg-saporin impairs feature binding in rats. Journal of Neuroscience, 29(13), 4120–4130.PubMedCrossRefGoogle Scholar
  12. Brown, A. M., Schwindt, P. C., & Crill, W. E. (1993). Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons. Journal of Neurophysiology, 70(4), 1530–1543.PubMedGoogle Scholar
  13. Bullier, J., McCourt, M. E., & Henry, G. H. (1988). Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat. Experimental Brain Research, 70, 90–98.Google Scholar
  14. Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95, 49–90.PubMedCrossRefGoogle Scholar
  15. Bullock, D., Cisek, P., & Grossberg, S. (1998). Cortical networks for control of voluntary arm movements under variable force conditions. Cerebral Cortex, 8, 48–62.PubMedCrossRefGoogle Scholar
  16. Canavier, C. C., Oprisan, S. A., Callaway, J. C., Ji, H., & Shepard, P. D. (2007). Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. Journal of Neurophysiology, 98(5), 3006–3022.PubMedCrossRefGoogle Scholar
  17. Cantrell, A. R., & Catterall, W. A. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nature Review Neuroscience, 2, 397–407.CrossRefGoogle Scholar
  18. Carpenter, G. A., & Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37, 54–115.CrossRefGoogle Scholar
  19. Carpenter, G. A., & Grossberg, S. (1991). Pattern recognition by self-organizing neural Networks. Cambridge: MIT Press.Google Scholar
  20. Carter, A. J., O’Connor, W. T., Carter, M. J., & Ungerstedt, U. (1995). Caffeine enhances acetylcholine release in the hippocampus in vivo by a selective interaction with adenosine a1 receptors. Journal of Pharmacology and Experimental Therapeutics, 273(2), 637–642.PubMedGoogle Scholar
  21. Chisum, H. J., Mooser, F., & Fitzpatrick, D. (2003). Emergent properties of Layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. Journal of Neuroscience, 23, 2947–2960.PubMedGoogle Scholar
  22. Cox, D. H., Cui, J., & Aldrich, R. W. (1997). Allosteric gating of a large conductance ca-activated K+ channel. Journal of General Physiology, 110(3), 257–281.PubMedCrossRefGoogle Scholar
  23. Crouzier, D., Baubichon, D., Bourbon, F., & Testylier, G. (2006). Acetylcholine release, EEG spectral analysis, sleep staging and body temperature studies: a multiparametric approach on freely moving rats. Journal of Neuroscience Methods, 151(2), 159–167.PubMedCrossRefGoogle Scholar
  24. Delcour, A. H., Lipscombe, D., & Tsien, R. W. (1993). Multiple modes of n-type calcium differences in gating kinetics channel activity distinguished by differences in gating kinetics. Journal of Neuroscience, 13(1), 181–194.PubMedGoogle Scholar
  25. Descarries, L., & Umbriaco, D. (1995). Ultrastructural basis of monoamine and acetylcholine function in cns. Seminars in Neuroscience, 7(5), 309–318.CrossRefGoogle Scholar
  26. Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of Royal Socociety B, 353, 1245–1255.CrossRefGoogle Scholar
  27. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994a). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1(3), 195–230.PubMedCrossRefGoogle Scholar
  28. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994b). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6(1), 14–18.CrossRefGoogle Scholar
  29. Ellias, S., & Grossberg, S. (1975). Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks. Biological Cybernetics, 20, 69–98.CrossRefGoogle Scholar
  30. Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2–3), 195–225.Google Scholar
  31. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.PubMedCrossRefGoogle Scholar
  32. Fellous, J.-M. M., Rudolph, M., Destexhe, A., & Sejnowski, T. J. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience, 122(3), 811–829.PubMedCrossRefGoogle Scholar
  33. Freeman, W. J. (1979). Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics, 33(4), 237–247.PubMedCrossRefGoogle Scholar
  34. Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.PubMedCrossRefGoogle Scholar
  35. Gao, E., & Suga, N. (1998). Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proceedings of the National Academy of Sciences of the United States of America, 95, 12663–12670.PubMedCrossRefGoogle Scholar
  36. Giocomo, L., & Hasselmo, M. (2007). Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Molecular Neurobiology, 36(2), 184–200.PubMedCrossRefGoogle Scholar
  37. Goldman, D. E. (1943). Potential, impedance, and rectification in membranes. The Journal of General Physiology, 27, 37–60.PubMedCrossRefGoogle Scholar
  38. Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 213–257.Google Scholar
  39. Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1–51.PubMedCrossRefGoogle Scholar
  40. Grossberg, S. (1999). How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision, 12, 163–186.PubMedCrossRefGoogle Scholar
  41. Grossberg, S. (2003). How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex. Behavioral and Cognitive Neuroscience Reviews, 2, 47–76.PubMedCrossRefGoogle Scholar
  42. Grossberg, S., & Levine, D. (1975). Some developmental and attentional biases in the contrast enhancement and short term memory of recurrent neural networks. Journal of Theoretical Biology, 53(2), 341–380.PubMedCrossRefGoogle Scholar
  43. Grossberg, S., & Versace, M. (2008). Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Research, 1218, 278–312.PubMedCrossRefGoogle Scholar
  44. Hata, T., Kumai, K., & Okaichi, H. (2007). Hippocampal acetylcholine efflux increases during negative patterning and elemental discrimination in rats. Neuroscience Letters, 418(2), 127–132.PubMedCrossRefGoogle Scholar
  45. Hestrin, S., & Armstrong, W. E. (1996). Morphology and physiology of cortical neurons in layer i. Journal of Neuroscience, 16(17), 5290–5300.PubMedGoogle Scholar
  46. Hicks, G. A., & Marrion, N. V. (1998). Ca2+ −dependent inactivation of large conductance Ca2+ −activated K+ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. The Journal of Physiology, 508(3), 721–734.PubMedCrossRefGoogle Scholar
  47. Hirschberg, B., Maylie, J., Adelman, J. P., & Marrion, N. V. (1998). Gating of recombinant small-conductance Ca-activated K + channels by calcium. Journal of General Physiology, 111(4), 565–581.PubMedCrossRefGoogle Scholar
  48. Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. The Journal of Physiology, 116(4), 449–472.PubMedGoogle Scholar
  49. Hodgkin, A. L., & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. The Journal of Physiology, 108, 37–77.PubMedGoogle Scholar
  50. Hotson, J. R., & Prince, D. A. (1980). A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. Journal of Neurophysiology, 43(2), 409–419.PubMedGoogle Scholar
  51. Hsieh, C. Y., Cruikshank, S. J., & Metherate, R. (2000). Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research, 880(1–2), 51–64.PubMedCrossRefGoogle Scholar
  52. Karmarkar, U. R., & Buonomano, D. V. (2006). Different forms of homeostatic plasticity are engaged with distinct temporal profiles. The European journal of neuroscience, 23(6), 1575–1584.PubMedCrossRefGoogle Scholar
  53. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.PubMedCrossRefGoogle Scholar
  54. King, J. D., & Meriney, S. D. (2005). Proportion of N-type calcium current activated by action potential stimuli. Journal of Neurophysiology, 94(6), 3762–3770.PubMedCrossRefGoogle Scholar
  55. Klink, R., & Alonso, A. (1997). Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. Journal of Neurophysiology, 77(4), 1813–1828.PubMedGoogle Scholar
  56. Köhn, J., & Wörgötter, F. (1998). Employing the zeta-transform to optimize the calculation of the synaptic conductance of NMDA and other synaptic channels in network simulations. Neural Computation, 10(7), 1639–1651.PubMedCrossRefGoogle Scholar
  57. Kong, W.-J. J., Guo, C.-K. K., Zhang, S., Hao, J., Wang, Y.-J. J., & Li, Z.-W. W. (2005). The properties of ach-induced BK currents in guinea pig type ii vestibular hair cells. Hearing Research, 209(1–2), 1–9.PubMedCrossRefGoogle Scholar
  58. Kong, W.-J. J., Guo, C.-K. K., Zhang, X.-W. W., Chen, X., Zhang, S., Li, G.-Q. Q., et al. (2007). The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type ii vestibular hair cells. Brain Research, 1129(1), 110–115.PubMedCrossRefGoogle Scholar
  59. Köppen, A., Klein, J., Schmidt, B. H., van der Staay, F. J., & Löffelholz, K. (1996). Effects of nicotinamide on central cholinergic transmission and on spatial learning in rats. Pharmacology, Biochemistry, and Behavior, 53(4), 783–790.PubMedCrossRefGoogle Scholar
  60. Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Jounral of Neurophysiology, 72, 1270–1277.Google Scholar
  61. Krause, M., & Pedarzani, P. (2000). A protein phosphatase is involved in the cholinergic suppression of the Ca(2+)-activated K(+) current sI(AHP) in hippocampal pyramidal neurons. Neuropharmacology, 39(7), 1274–1283.PubMedCrossRefGoogle Scholar
  62. Krupa, D. J., Ghazanfar, A. A., & Nicolelis, M. A. L. (1999). Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proceedings of the National Academy of Sciences of the United States of America, 96, 8200–8205.PubMedCrossRefGoogle Scholar
  63. Kurokawa, M., Shiozaki, S., Nonaka, H., Kase, H., Nakamura, J., & Kuwana, Y. (1996). In vivo regulation of acetylcholine release via adenosine a1 receptor in rat cerebral cortex. Neuroscience Letters, 209(3), 181–184.PubMedCrossRefGoogle Scholar
  64. Lancaster, B., & Adams, P. R. (1986). Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. Journal of Neurophysiology, 55(6), 1268–1282.PubMedGoogle Scholar
  65. Lee, J. C. F., Callaway, J. C., & Foehring, R. C. (2005). Effects of temperature on calcium transients and ca2+ −dependent afterhyperpolarizations in neocortical pyramidal neurons. Journal of Neurophysiology, 93(4), 2012–2020.PubMedCrossRefGoogle Scholar
  66. Levitt, J. B., Yoshioka, T., & Lund, J. S. (1994). Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. The Journal of Comparative Neurology, 342, 551–570.PubMedCrossRefGoogle Scholar
  67. Lima, P. A., & Marrion, N. V. (2007). Mechanisms underlying activation of the slow ahp in rat hippocampal neurons. Brain Research, 1150, 74–82.PubMedCrossRefGoogle Scholar
  68. Loane, D. J., Lima, P. A., & Marrion, N. V. (2007). Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain. Journal of Cell Science, 120(Pt 6), 985–995.PubMedCrossRefGoogle Scholar
  69. Lorenzon, N. M., & Foehring, R. C. (1992). Relationship Between Repetitive Firing and Afterhyperpolarizations in Human Neocortical Neurons. Journal of Neurophysiology, 67(2), 350–363.PubMedGoogle Scholar
  70. Lorenzon, N. M., & Foehring, R. C. (1995). Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. Journal of Neurophysiology, 73(4), 1430–1442.PubMedGoogle Scholar
  71. Luvisetto, S., Fellin, T., Spagnolo, M., Hivert, B., Brust, P. F., Harpold, M. M., et al. (2004). Modal gating of human CaV2.1 (P/Q-type) calcium channels: I. the slow and the fast gating modes and their modulation by beta subunits. Journal of General Physiology, 124(5), 445–61.PubMedCrossRefGoogle Scholar
  72. Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297), 213–215.PubMedCrossRefGoogle Scholar
  73. Marrosu, F., Portas, C., Mascia, M., Casu, M., Fa, M., Giagheddu, M., et al. (1995). Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Research, 671(2), 329–332.PubMedCrossRefGoogle Scholar
  74. Matthews, E. A., Linardakis, J. M., & Disterhoft, J. F. (2009). The fast and slow afterhyperpolarizations are differentially modulated in hippocampal neurons by aging and learning. Journal of Neuroscience, 29(15), 4750–4755.PubMedCrossRefGoogle Scholar
  75. McCormick, D. A., & Williamson, A. (1989). Convergence and divergence of neurotransmitter action in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 86(20), 8098–8102.PubMedCrossRefGoogle Scholar
  76. Mechawar, N., Watkins, K. C., & Descarries, L. (2002). Ultrastructural features of the acetylcholine innervation in the developing parietal cortex of rat. The Journal of Comparative Neurology, 443(3), 250–258.PubMedCrossRefGoogle Scholar
  77. Mitchell, J., Sundberg, K., & Reynolds, J. (2007). Differential attention-dependent response modulation across cell classes in macaque visual area v4. Neuron, 55(1), 131–141.PubMedCrossRefGoogle Scholar
  78. Morishima, M., & Kawaguchi, Y. (2006). Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. The Journal of Neuroscience, 26(16), 4394–4405.PubMedCrossRefGoogle Scholar
  79. Muller, W., Petrozzino, J. J., Griffith, L. C., Danho, W., & Connor, J. A. (1992). Specific involvement of ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness. Journal of Neurophysiology, 68(6), 2264–2269.PubMedGoogle Scholar
  80. Nakajima, Y., Nakajima, S., Leonard, R. J., & Yamaguchi, K. (1986). Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 83(9), 3022–3026.PubMedCrossRefGoogle Scholar
  81. Nelson, C. L., Sarter, M., & Bruno, J. P. (2005). Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience, 132(2), 347–359.PubMedCrossRefGoogle Scholar
  82. Pandya, P. K., Moucha, R., Engineer, N. D., Rathbun, D. L., Vazquez, J., & Kilgard, M. P. (2005). Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex. Hearing Research, 203(1–2), 10–20.PubMedCrossRefGoogle Scholar
  83. Parikh, V., & Sarter, M. (2006). Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. Journal of Neurochemistry, 97(2), 488–503.PubMedCrossRefGoogle Scholar
  84. Parikh, V., Kozak, R., Martinez, V., & Sarter, M. (2007). Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron, 56(1), 141–154.PubMedCrossRefGoogle Scholar
  85. Pedarzani, P., & Storm, J. F. (1996). Evidence that ca/calmodulin-dependent protein kinase mediates the modulation of the Ca2+ −dependent K+ current, Iahp, by acetylcholine, but not by glutamate, in hippocampal neurons. Pflügers Archival European Journal of Physiology, 431(5), 723–728.Google Scholar
  86. Pineda, J. C., Waters, R. S., & Foehring, R. C. (1998). Specificity in the interaction of HVA Ca2+ channel types with Ca2+ −dependent AHPs and firing behavior in neocortical pyramidal neurons. Journal of Neurophysiology, 79(5), 2522–2534.PubMedGoogle Scholar
  87. Pollen, D. A. (1999). On the neural correlates of visual perception. Cerebral Cortex, 9, 4–19.PubMedCrossRefGoogle Scholar
  88. Povysheva, N. V., Gonzalez-Burgos, G., Zaitsev, A. V., Kroner, S., Barrionuevo, G., Lewis, D. A., et al. (2006). Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cerebral Cortex, 16(4), 541–552.PubMedCrossRefGoogle Scholar
  89. Power, J. M., & Sah, P. (2008). Competition between calcium-activated k+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons. Journal of Neuroscience, 28(12), 3209–3220.PubMedCrossRefGoogle Scholar
  90. Prakriya, M., & Lingle, C. J. (1999). BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Journal of Neurophysiology, 81(5), 2267–2278.PubMedGoogle Scholar
  91. Prakriya, M., Solaro, C. R., & Lingle, C. J. (1996). [Ca2+]i elevations detected by BK channels during Ca2+ influx and muscarine-mediated release of Ca2+ from intracellular stores in rat chromaffin cells. Journal of Neuroscience, 16(14), 4344–4359.PubMedGoogle Scholar
  92. Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.PubMedCrossRefGoogle Scholar
  93. Ramanathan, D., Tuszynski, M. H., & Conner, J. M. (2009). The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. Journal of Neuroscience, 29(18), 5992–6000.PubMedCrossRefGoogle Scholar
  94. Rasch, B. H., Born, J., & Gais, S. (2006). Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. Journal of Cognitive Neuroscience, 18(5), 793–802.PubMedCrossRefGoogle Scholar
  95. Rhodes, P. A., & Gray, C. M. (1994). Simulations of intrinsically bursting neocortical pyramidal neurons. Neural Computation, 6(6), 1086–1110.CrossRefGoogle Scholar
  96. Saar, D., & Barkai, E. (2003). Long-term modifications in intrinsic neuronal properties and rule learning in rats. European Journal of Neuroscience, 17, 2727–2734.PubMedCrossRefGoogle Scholar
  97. Saar, D., Grossman, Y., & Barkai, E. (2001). Long-lasting cholinergic modulation underlies rule learning in rats. Journal of Neuroscience, 21, 1385–1392.PubMedGoogle Scholar
  98. Sah, P. (1996). Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends in Neuroscience, 19(4), 150–154.CrossRefGoogle Scholar
  99. Santini, E., Quirk, G. J., & Porter, J. T. (2008). Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. Journal of Neuroscience, 28(15), 4028–4036.PubMedCrossRefGoogle Scholar
  100. Sarter, M., Hasselmo, M. E., Bruno, J. P., & Givens, B. (2005). Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection. Brain Research Reviews, 48, 98–111.PubMedCrossRefGoogle Scholar
  101. Sarter, M., Parikh, V., & Howe, W. M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews Neuroscience, 10(5), 383–390.PubMedCrossRefGoogle Scholar
  102. Satake, T., Mitani, H., Nakagome, K., & Kaneko, K. (2008). Individual and additive effects of neuromodulators on the slow components of afterhyperpolarization currents in layer v pyramidal cells of the rat medial prefrontal cortex. Brain Research, 1229, 47–60.PubMedCrossRefGoogle Scholar
  103. Schmidt, K. E., Goebel, R., Löwel, S., & Singer, W. (1997). The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. European Journal of Neuroscience, 9, 1083–1089.PubMedCrossRefGoogle Scholar
  104. Schreiber, M., & Salkoff, L. (1997). A novel calcium-sensing domain in the BK channel. Biophysical Journal, 73(3), 1355–1363.PubMedCrossRefGoogle Scholar
  105. Schwindt, P. C., Spain, W. J., Foehring, R. C., Stafstrom, C. E., Chubb, M. C., & Crill, W. E. (1988a). Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. Journal of Neurophysiology, 59, 424–449.PubMedGoogle Scholar
  106. Schwindt, P. C., Spain, W. J., Foehring, R. C., Stafstrom, C. E., Chubb, M. C., & Crill, W. E. (1988b). Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in excitability changes. Journal of Neurophysiology, 59, 450–467.PubMedGoogle Scholar
  107. Shapiro, M. S., Roche, J. P., Kaftan, E. J., Cruzblanca, H., Mackie, K., & Hille, B. (2000). Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current. Journal of Neuroscience, 20(5), 1710–1721.PubMedGoogle Scholar
  108. Sillito, A. M., Jones, H. E., Gerstein, G. L., & West, D. C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature, 369, 479–482.PubMedCrossRefGoogle Scholar
  109. Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., & D’Angelo, E. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. Frontiers in Cellular Neuroscience, 1(12), 2.PubMedGoogle Scholar
  110. Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), 507–519.CrossRefGoogle Scholar
  111. Soto, G., Kopell, N., & Sen, K. (2006). Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex. Journal of Neurophysiology, 96, 2972–2983.PubMedCrossRefGoogle Scholar
  112. Storm, J. F. (1987). Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. The Journal of Physiology, 385(1), 733–759.PubMedGoogle Scholar
  113. Storm, J. F. (1989). An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. The Journal of Physiology, 409, 171–190.PubMedGoogle Scholar
  114. Sun, X., Gu, X. Q., & Haddad, G. G. (2003). Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+ −activated K+ current in mouse neocortical pyramidal neurons. The Journal of Neuroscience, 23(9), 3639–3648.PubMedGoogle Scholar
  115. Taylor, A. L., Hickey, T. J., Prinz, A. A., & Marder, E. (2006). Structure and visualization of high-dimensional conductance spaces. Journal of Neurophysiology, 96, 891–905.PubMedCrossRefGoogle Scholar
  116. Traub, R. D., Wong, R. K., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66(2), 635–650.PubMedGoogle Scholar
  117. Traub, R. D., Buhl, E. H., Gloveli, T., & Whittington, M. A. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Journal of Neurophysiology, 89(2), 909–921.PubMedCrossRefGoogle Scholar
  118. Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.PubMedCrossRefGoogle Scholar
  119. Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264, 974–977.PubMedCrossRefGoogle Scholar
  120. Umbriaco, D., Watkins, K. C., Descarries, L., Cozzari, C., & Hartman, B. K. (1994). Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. The Journal of Comparative Neurology, 348(3), 351–373.PubMedCrossRefGoogle Scholar
  121. Usrey, W. M. (2002). The role of spike timing for thalamocortical processing. Current Opinion in Neurobiology, 12, 411–417.PubMedCrossRefGoogle Scholar
  122. van Der Werf, Y. D., Witter, M. P., & Groenewegen, H. J. (2002). The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Research Reviews, 39, 107–140.PubMedCrossRefGoogle Scholar
  123. Van Geit, W., Achard, P., & De Schutter, E. (2007). Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics, 1, 1–17.PubMedGoogle Scholar
  124. Versace, M., Ames, H., Léveillé, J., Fortenberry, B., & Gorchetchnikov, A. (2008). Kinness: a modular framework for computational neuroscience. Neuroinformatics, 6, 291–309.PubMedCrossRefGoogle Scholar
  125. Villalobos, C., Shakkottai, V. G., Chandy, K. G., Michelhaugh, S. K., & Andrade, R. (2004). SKca channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. Journal of Neuroscience, 24(14), 3537–3542.PubMedCrossRefGoogle Scholar
  126. Vogalis, F., Storm, J. F., & Lancaster, B. (2003). SK channels and the varieties of slow after-hyperpolarizations in neurons. European Journal of Neuroscience, 18, 3155–3166.PubMedCrossRefGoogle Scholar
  127. Wallner, M., Meera, P., & Toro, L. (1999). Molecular basis of fast inactivation in voltage and Ca2+ −activated K+ channels: a transmembrane beta-subunit homolog. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 4137–4142.PubMedCrossRefGoogle Scholar
  128. Wang, X. J., Liu, Y., Sanchez-Vives, M. V., & McCormick, D. A. (2003). Adaptation and temporal decorrelation by single neurons in the primary visual cortex. Journal of Neurophysiology, 89, 3279–3293.PubMedCrossRefGoogle Scholar
  129. Watt, A., van Rossum, M., MacLeod, K., Nelson, S., & Turrigiano, G. (2000). Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron, 26(3), 659–670.PubMedCrossRefGoogle Scholar
  130. Weaver, C. M., & Wearne, S. L. (2008). Neuronal firing sensitivity to morphologic and active mebrane parameters. PLoS Computational Biology, 4(1), 130–150.CrossRefGoogle Scholar
  131. Wei, A. D., Gutman, G. A., Aldrich, R., Chandy, K. G., Grissmer, S., & Wulff, H. (2005). International union of pharmacology. LII. nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacological Reviews, 57(4), 463–472.PubMedCrossRefGoogle Scholar
  132. Wersing, H., Beyn, W., & Ritter, H. (2001). Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions. Neural Computation, 13, 1811–1825.PubMedCrossRefGoogle Scholar
  133. Williams, J. A., Comisarow, J., Day, J., Fibiger, H. C., & Reiner, P. B. (1994). State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. Journal of Neuroscieince, 14(9), 5236–5242.Google Scholar
  134. Wilson, C. J., Weyrick, A., Terman, D., Hallworth, N. E., & Bevan, M. D. (2004). A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. Journal of Neurophysiology, 91(5), 1963–1980.PubMedCrossRefGoogle Scholar
  135. Winters, B. D., Bartko, S. J., Saksida, L. M., & Bussey, T. J. (2007). Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information. Learning & Memory, 14(9), 590–596.CrossRefGoogle Scholar
  136. Zhang, Y. Q., Lu, S.-G., Ji, Y.-P., Zhao, Z.-Q., & Mei, J. (2004). Electrophysiological and pharmacological properties of nucleus basalis magnocellularis neurons in rats. Acta Pharmacologica Sinica, 25(2), 161–170.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jesse Palma
    • 1
  • Massimiliano Versace
    • 1
  • Stephen Grossberg
    • 1
  1. 1.Center for Adaptive Systems, Department of Cognitive and Neural Systems, and Center of Excellence for Learning in Education, Science, and TechnologyBoston UniversityBostonUSA

Personalised recommendations