Journal of Computational Neuroscience

, Volume 28, Issue 2, pp 347–359 | Cite as

Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity

  • Shigeru Kubota
  • Tatsuo Kitajima


The maturation of cortical circuits is strongly influenced by sensory experience during a restricted critical period. The developmental alteration in the subunit composition of NMDA receptors (NMDARs) has been suggested to be involved in regulating the timing of such plasticity. However, this hypothesis does not explain the evidence that enhancing GABA inhibition triggers a critical period in the visual cortex. Here, to investigate how the NMDAR and GABA functions influence synaptic organization, we examine an spike-timing-dependent plasticity (STDP) model that incorporates the dynamic modulation of LTP, associated with the activity- and subunit-dependent desensitization of NMDARs, as well as the background inhibition by GABA. We show that the competitive interaction between correlated input groups, required for experience-dependent synaptic modifications, may emerge when both the NMDAR subunit expression and GABA inhibition reach a sufficiently mature state. This may suggest that the cooperative action of these two developmental mechanisms can contribute to embedding the spatiotemporal structure of input spikes in synaptic patterns and providing the trigger for experience-dependent cortical plasticity.


STDP Synaptic competition Critical period Neocortex 



This study is partially supported by Grant-in-Aid for Scientific Research (KAKENHI (19700281), Young Scientists (B)) from the Japanese government. S.K. is partially supported by the Program to Accelerate the Internationalization of University Education from the Japanese government and the International Research Training Program from Yamagata University.


  1. Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. C., & Whitteridge, D. (1998). Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cerebral Cortex, 8, 462–476.CrossRefPubMedGoogle Scholar
  2. Angeli, D., Ferrell, J. E., & Sontag, E. D. (2004). Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proceedings of the National Academy of Sciences of the United States of America, 101, 1822–1827.CrossRefPubMedGoogle Scholar
  3. Barria, A., & Malinow, R. (2002). Subunit-specific NMDA receptor trafficking to synapses. Neuron, 35, 345–353.CrossRefPubMedGoogle Scholar
  4. Bellone, C., & Nicoll, R. A. (2007). Rapid bidirectional switching of synaptic NMDA receptors. Neuron, 55, 779–785.CrossRefPubMedGoogle Scholar
  5. Bender, V. A., Bender, K. J., Brasier, D. J., & Feldman, D. E. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. Journal of Neuroscience, 26, 4166–4177.CrossRefPubMedGoogle Scholar
  6. Bernander, O., Douglas, R. J., Martin, K. A. C., & Koch, C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America, 88, 11569–11573.CrossRefPubMedGoogle Scholar
  7. Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464–10472.PubMedGoogle Scholar
  8. Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience, 31, 25–46.CrossRefPubMedGoogle Scholar
  9. Crair, M. C., & Malenka, R. C. (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375, 325–328.CrossRefPubMedGoogle Scholar
  10. Daw, M. I., Scott, H. L., & Isaac, J. T. R. (2007). Developmental synaptic plasticity at the thalamocortical input to barrel cortex: Mechanisms and roles. Molecular and Cellular Neuroscience, 34, 493–502.CrossRefPubMedGoogle Scholar
  11. Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.CrossRefPubMedGoogle Scholar
  12. Dumas, T. C. (2005). Developmental regulation of cognitive abilities: Modified composition of a molecular switch turns on associative learning. Progress in Neurobiology, 76, 189–211.CrossRefPubMedGoogle Scholar
  13. Egger, V., Feldmeyer, D., & Sakmann, B. (1999). Coincidence detection and change of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature Neuroscience, 2, 1098–1105.CrossRefPubMedGoogle Scholar
  14. Erisir, A., & Harris, J. L. (2003). Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. Journal of Neuroscience, 23, 5208–5218.PubMedGoogle Scholar
  15. Fagiolini, M., & Hensch, T. K. (2000). Inhibitory threshold for critical-period activation in primary visual cortex. Nature, 404, 183–186.CrossRefPubMedGoogle Scholar
  16. Fagiolini, M., Katagiri, H., Miyamoto, H., Mori, H., Grant, S. G. N., Mishina, M., et al. (2003). Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling. Proceedings of the National Academy of Sciences of the United States of America, 100, 2854–2859.CrossRefPubMedGoogle Scholar
  17. Feldman, D. E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.CrossRefPubMedGoogle Scholar
  18. Feldman, D. E., Nicoll, R. A., Malenka, R. C., & Isaac, J. T. R. (1998). Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron, 21, 347–357.CrossRefPubMedGoogle Scholar
  19. Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., & Monyer, H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. Journal of Neuroscience, 17, 2469–2476.PubMedGoogle Scholar
  20. Froemke, R. C., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–438.CrossRefPubMedGoogle Scholar
  21. Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383, 76–78.CrossRefPubMedGoogle Scholar
  22. Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models. Cambridge: Cambridge University.Google Scholar
  23. Gordon, J. A., & Stryker, M. P. (1996). Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. Journal of Neuroscience, 16, 3274–3286.PubMedGoogle Scholar
  24. Gütig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. (2003). Learning input correlations though nonlinear temporally asymmetric Hebbian plasticity. Journal of Neuroscience, 23, 3697–3714.PubMedGoogle Scholar
  25. Hanover, J. L., Huang, Z. J., Tonegawa, S., & Stryker, M. P. (1999). Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. Journal of Neuroscience, 19, RC40.Google Scholar
  26. Helmchen, F., Imoto, K., & Sakmann, B. (1996). Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophysical Journal, 70, 1069–1081.CrossRefPubMedGoogle Scholar
  27. Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 877–888.CrossRefPubMedGoogle Scholar
  28. Hensch, T. K., Fagiolini, M., Mataga, N., Stryker, M. P., Baekkeskov, S., & Kash, S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 282, 1504–1508.CrossRefPubMedGoogle Scholar
  29. Hessler, N. A., Shirke, A. M., & Malinow, R. (1993). The probability of transmitter release at a mammalian central synapse. Nature, 366, 569–572.CrossRefPubMedGoogle Scholar
  30. Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98, 739–755.CrossRefPubMedGoogle Scholar
  31. Ito, I., Futai, K., Katagiri, H., Watanabe, M., Sakimura, K., Mishina, M., et al. (1997). Synapse-selective impairment of NMDA receptor functions in mice lacking NMDA receptor epsilon 1 or epsilon 2 subunit. Journal of Physiology (London), 500(2), 401–408.Google Scholar
  32. Iwai, Y., Fagiolini, M., Obata, K., & Hensch, T. K. (2003). Rapid critical period induction by tonic inhibition in visual cortex. Journal of Neuroscience, 23, 6695–6702.PubMedGoogle Scholar
  33. Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10, 3178–3182.PubMedGoogle Scholar
  34. Kempter, R., Gerstner, W., & van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Physical Review E, 59, 4498–4514.CrossRefGoogle Scholar
  35. Kempter, R., Gerstner, W., & van Hemmen, J. L. (2001). Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Computation, 13, 2709–2741.CrossRefPubMedGoogle Scholar
  36. Kepecs, A., van Rossum, M. C. W., Song, S., & Tegner, J. (2002). Spike-timing-dependent plasticity: Common themes and divergent vistas. Biological Cybernetics, 87, 446–458.CrossRefPubMedGoogle Scholar
  37. Kirkwood, A., & Bear, M. F. (1994). Hebbian synapses in visual cortex. Journal of Neuroscience, 14, 1634–1645.PubMedGoogle Scholar
  38. Koch, C. (1999). Biophysics of computation. New York: Oxford University.Google Scholar
  39. Köhr, G. (2006). NMDA receptor function: subunit composition versus spatial distribution. Cell and Tissue Research, 326, 439–446.CrossRefPubMedGoogle Scholar
  40. Krupp, J. J., Vissel, B., Heinemann, S. F., & Westbrook, G. L. (1996). Calcium-dependent inactivation of recombinant N-methyl-d-aspartate receptors is NR2 subunit specific. Molecular Pharmacology, 50, 1680–1688.PubMedGoogle Scholar
  41. Kubota, S., & Kitajima, T. (2008). A model for synaptic development regulated by NMDA receptor subunit expression. Journal of Computational Neuroscience, 24, 1–20.CrossRefPubMedGoogle Scholar
  42. Kubota, S., Rubin, J., & Kitajima, T. (2009). Modulation of LTP/LTD balance in STDP by an activity-dependent feedback mechanism. Neural Networks, 22, 527–535.CrossRefPubMedGoogle Scholar
  43. Kumar, S. S., & Huguenard, J. R. (2003). Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. Journal of Neuroscience, 23, 10074–10083.PubMedGoogle Scholar
  44. Legendre, P., Rosenmund, C., & Westbrook, G. L. (1993). Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. Journal of Neuroscience, 13, 674–684.PubMedGoogle Scholar
  45. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.CrossRefPubMedGoogle Scholar
  46. Medina, I., Leinekugel, X., & Ben-Ari, Y. (1999). Calcium-dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture. European Journal of Neuroscience, 11, 2422–2430.CrossRefPubMedGoogle Scholar
  47. Meffin, H., Besson, J., Burkitt, A. N., & Grayden, D. B. (2006). Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity. Physical Review E, 73, 041911.CrossRefGoogle Scholar
  48. Mierau, S. B., Meredith, R. M., Upton, A. L., & Paulsen, O. (2004). Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. Proceedings of the National Academy of Sciences of the United States of America, 101, 15518–15523.CrossRefPubMedGoogle Scholar
  49. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.CrossRefPubMedGoogle Scholar
  50. Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98, 459–478.CrossRefPubMedGoogle Scholar
  51. Nevian, T., & Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. Journal of Neuroscience, 26, 11001–11013.CrossRefPubMedGoogle Scholar
  52. Quinlan, E. M., Olstein, D. H., & Bear, M. F. (1999a). Bidirectional, experience-dependent regulation of N-methyl-d-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proceedings of the National Academy of Sciences of the United States of America, 96, 12876–12880.CrossRefPubMedGoogle Scholar
  53. Quinlan, E. M., Philpot, B. D., Huganir, R. L., & Bear, M. F. (1999b). Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neuroscience, 2, 352–357.CrossRefPubMedGoogle Scholar
  54. Ramoa, A. S., Paradiso, M. A., & Freeman, R. D. (1988). Blockade of intracortical inhibition in kitten striate cortex: Effects on receptive field properties and associated loss of ocular dominance plasticity. Experimental Brain Research, 73, 285–296.CrossRefGoogle Scholar
  55. Rauschecker, J. P., & Singer, W. (1979). Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity. Nature, 280, 58–60.CrossRefPubMedGoogle Scholar
  56. Rittenhouse, C. D., Shouval, H. Z., Paradiso, M. A., & Bear, M. F. (1999). Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature, 397, 347–350.CrossRefPubMedGoogle Scholar
  57. Rittenhouse, C. D., Siegler, B. A., Voelker, C. A., Shouval, H. Z., Paradiso, M. A., & Bear, M. F. (2006). Stimulus for rapid ocular dominance plasticity in visual cortex. Journal of Neurophysiology, 95, 2947–2950.CrossRefPubMedGoogle Scholar
  58. Roberts, E. B., & Ramoa, A. S. (1999). Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. Journal of Neurophysiology, 81, 2587–2591.PubMedGoogle Scholar
  59. Rosenmund, C., Feltz, A., & Westbrook, G. L. (1995). Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. Journal of Neurophysiology, 73, 427–430.PubMedGoogle Scholar
  60. Rubin, J., Lee, D. D., & Sompolinsky, H. (2001). Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters, 86, 364–367.CrossRefPubMedGoogle Scholar
  61. Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579.CrossRefPubMedGoogle Scholar
  62. Shatz, C. J. (1990). Impulse activity and the patterning of connections during CNS development. Neuron, 5, 745–756.CrossRefPubMedGoogle Scholar
  63. Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.CrossRefPubMedGoogle Scholar
  64. Song, S., & Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron, 32, 339–350.CrossRefPubMedGoogle Scholar
  65. Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.CrossRefPubMedGoogle Scholar
  66. Stephenson, F. A. (2001). Subunit characterization of NMDA receptors. Current Drug Targets, 2, 233–239.CrossRefPubMedGoogle Scholar
  67. Svoboda, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1997). in vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature, 385, 161–165.CrossRefPubMedGoogle Scholar
  68. Tanabe, S., & Pakdaman, K. (2001). Noise-enhanced neuronal reliability. Physical Review E, 64, 041904.CrossRefGoogle Scholar
  69. Tegnér, J., & Kepecs, Á. (2002). Why neuronal dynamics should control synaptic learning rules. Advances in Neural Information Processing Systems, 14, 285–292.Google Scholar
  70. Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79, 1549–1566.PubMedGoogle Scholar
  71. Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature, 299, 583–591.CrossRefPubMedGoogle Scholar
  72. Wolfart, J., Debay, D., Masson, G. L., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.CrossRefPubMedGoogle Scholar
  73. Yeung, L. C., Shouval, H. Z., Blais, B. S., & Cooper, L. N. (2004). Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proceedings of the National Academy of Sciences of the United States of America, 101, 14943–14948.CrossRefPubMedGoogle Scholar
  74. Zador, A., Koch, C., & Brown, T. H. (1990). Biophysical model of a Hebbian synapse. Proceedings of the National Academy of Sciences of the United States of America, 87, 6718–6722.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biomedical Information EngineeringYamagata UniversityYonezawaJapan
  2. 2.Department of Bio-System EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations