Skip to main content
Log in

Rapid determination of particle velocity from space-time images using the Radon transform

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Averbuch, A., Coifman, R. R., Donoho, D. L., Israeli, M., & Walden, J. (2001). Fast slant stack: A notion of radon transform for data on a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful, and invertible. In: Technical Report (University S, ed).

  • Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13, 111–122. doi:10.1016/0031-3203(81)90009-1.

    Article  Google Scholar 

  • Chaigneau, E., Oheim, M., Audinat, E., & Charpak, S. (2003). Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proceedings of the National Academy of Sciences of the United States of America, 100, 13081–13086. doi:10.1073/pnas.2133652100.

    Article  CAS  PubMed  Google Scholar 

  • Chao, S. H., Holl, M. R., Koschwanez, J. H., Carlson, R. H., Jang, L. S., & Meldrum, D. R. (2005). Velocity measurement in microchannels with a laser confocal microscope and particle linear image velocimetry. Microfluidics and Nanofluidics, 1, 155–160. doi:10.1007/s10404-004-0023-6.

    Article  Google Scholar 

  • Deans, S. R. (1983). The Radon transform and some of its applications. New York: Wiley and Sons.

    Google Scholar 

  • Fukumura, D., & Jain, R. K. (2008). Imaging angiogenesis and the microenvironment. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 116, 695–715.

    CAS  Google Scholar 

  • Göbel, W., Kampa, B. M., & Helmchen, F. (2007). Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods, 4, 73–79. doi:10.1038/nmeth989.

    Article  PubMed  Google Scholar 

  • Golub, G. H., & Kahan, W. (1965). Calculating singular values and pseudo-inverse of a matrix. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Gotze, W. A., & Druckmuller, H. J. (1996). A fast digital Radon transform–an efficient means for evaluating the Hough transform. Pattern Recognition, 28, 1985–2992.

    Article  Google Scholar 

  • Helmchen, F., & Kleinfeld, D. (2008). In vivo measurements of blood flow and glial cell function with two-photon laser scanning microscopy. Methods in Enzymology, 444, 231–254. doi:10.1016/S0076-6879(08)02810-3.

    Article  PubMed  Google Scholar 

  • Hutchinson, E. B., Stefanovic, B., Koretsky, A. P., & Silva, A. C. (2006). Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia. NeuroImage, 32, 520–530. doi:10.1016/j.neuroimage.2006.03.033.

    Article  PubMed  Google Scholar 

  • Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Reviews. Neuroscience, 5, 347–360. doi:10.1038/nrn1387.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J. J., Toma, I., Sipos, A., McCulloch, F., & Peti-Peterd, J. (2006). Quantitative imaging of basic functions in renal (patho) physiology. American Journal of Physiology. Renal Physiology, 291, F495–F502. doi:10.1152/ajprenal.00521.2005.

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld, D., & Denk, W. (2005). Imaging in neuroscience and development. In R. Yuste & A. Konnerth (Eds.), Two-photon imaging of cortical microcirculation (pp. 701–705). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Kleinfeld, D., Mitra, P. P., Helmchen, F., & Denk, W. (1998). Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 15741–15746. doi:10.1073/pnas.95.26.15741.

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld, D., Friedman, B., Lyden, P. D., & Shih, A. Y. (2008). Animal models of acute neurological injuries. In J. Chen, Z. Xu, X.-M. Xu & J. Zhang (Eds.), Targeted occlusion to surface and deep vessels in neocortex via linear and nonlinear optical absorption. Totowa: Humana.

    Google Scholar 

  • Nguyen, Q.-T., Tsai, P. S., & Kleinfeld, D. (2006). MPScope: a versatile software suite for multiphoton microscopy. Journal of Neuroscience Methods, 156, 351–359. doi:10.1016/j.jneumeth.2006.03.001.

    Article  PubMed  Google Scholar 

  • Nguyen, Q.-T., Dolnick, E. M., Driscoll, J., & Kleinfeld, D. (2009). Methods for in vivo optical imaging. In R. D. Frostig (Ed.), MPScope 2.0: A computer system for two-photon laser scanning microscopy with concurrent plasma-mediated ablation and electrophysiology (2nd ed., pp. 117–142). Boca Raton: CRC.

    Google Scholar 

  • Nishimura, B., Schaffer, C. B., Friedman, B., Lyden, P. D., & Kleinfeld, D. (2007). Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 365–370. doi:10.1073/pnas.0609551104.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, J. T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L., et al. (2003). Vascular cognitive impairment. The Lancet Neurology, 2, 89–98. doi:10.1016/S1474-4422(03)00305-3.

    Article  Google Scholar 

  • Petzold, G. C., Albeanu, D. F., Sato, T. F., & Murthy, V. N. (2008). Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron, 58, 879–910. doi:10.1016/j.neuron.2008.04.029.

    Article  Google Scholar 

  • Schaffer, C. B., Friedman, B., Nishimura, N., Schroeder, L. F., Tsai, P. S., Ebner, F. F., et al. (2006). Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. Public Library of Science Biology, 4, 258–270.

    CAS  Google Scholar 

  • Shih, A.Y., Friedman, B., Drew, P. J., Tsai, P. S., Lyden, P. D., & Kleinfeld, D. (2009). Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. Journal of Cerebral Blood Flow and Metabolism, 29, 738-751. doi:10.1038/jcbfm.2008.166.

    Google Scholar 

  • Sourice, A., & Plantier, G. (2005). Red blood cell velocity estimation in microvessels using the spatiotemporal autocorrelation. Measurement Science & Technology, 16, 2229–2239. doi:10.1088/0957-0233/16/11/014.

    Article  CAS  Google Scholar 

  • Stefanovic, B., Hutchinson, E., Yakovleva, V., Schram, V., Russell, J. T., Belluscio, L., et al. (2007). Functional reactivity of cerebral capillaries. Journal of Cerebral Blood Flow and Metabolism, 28, 961–972. doi:10.1038/sj.jcbfm.9600590.

    PubMed  Google Scholar 

  • Tsai, P. S., & Kleinfeld, D. (2009). Methods for in vivo optical imaging. In R. D. Frostig (Ed.), In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation: Principles and hardware realization (2nd ed., pp. 59–115). Boca Raton: CRC.

    Google Scholar 

  • Tsai, P. S., Nishimura, N., Yoder, E. J., Dolnick, E. M., White, G. A., & Kleinfeld, D. (2002). In vivo optical imaging of brain function. In R. D. Frostig (Ed.), Principles, design, and construction of a two photon laser scanning microscope for in vitro and in vivo brain imaging (pp. 113–171). Boca Raton: CRC.

    Google Scholar 

  • Tsai, P. S., Friedman, B., Ifarraguerri, A. I., Thompson, B. D., Lev-Ram, V., Schaffer, C. B., et al. (2003). All-optical histology using ultrashort laser pulses. Neuron, 39, 27–41. doi:10.1016/S0896-6273(03)00370-2.

    Article  CAS  PubMed  Google Scholar 

  • Villringer, A., Haberl, R. L., Dirnagl, U., Anneser, F., Verst, M., & Einhaupl, K. M. (1989). Confocal laser microscopy to study microcirculation on the rat brain surface in vivo. Brain Research, 504, 159–160. doi:10.1016/0006-8993(89)91616-8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Boyd, J., Delaney, K., & Murphy, T. H. (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. The Journal of Neuroscience, 25, 5333–5338. doi:10.1523/JNEUROSCI.1085-05.2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel N. Hill and Philbert S. Tsai for helpful discussions and two anonymous reviewers for constructive comments. This work was funded by the National Institutes of Health (EB003832, NS059832, RR021907, and MH085499 to DK; AG029681 to GC), the National Science Foundation (DBI0455027 to DK), a Bikura fellowship from the Israeli Science Foundation (to PB), and a Canadian Institute of Health post-doctoral fellowship (to AYS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kleinfeld.

Additional information

Action Editor: Rob Kass

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, P.J., Blinder, P., Cauwenberghs, G. et al. Rapid determination of particle velocity from space-time images using the Radon transform. J Comput Neurosci 29, 5–11 (2010). https://doi.org/10.1007/s10827-009-0159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0159-1

Keywords

Navigation