Journal of Computational Neuroscience

, Volume 26, Issue 2, pp 251–269 | Cite as

Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal

  • Roberto C. Sotero
  • Nelson J. Trujillo-Barreto
  • Juan C. Jiménez
  • Felix Carbonell
  • Rafael Rodríguez-Rojas


This paper extends a previously formulated deterministic metabolic/hemodynamic model for the generation of blood oxygenated level dependent (BOLD) responses to include both physiological and observation stochastic components (sMHM). This adds a degree of flexibility when fitting the model to actual data by accounting for un-modelled activity. We then show how the innovation method can be used to estimate unobserved metabolic/hemodynamic as well as vascular variables of the sMHM, from simulated and actual BOLD data. The proposed estimation method allowed for doing model comparison by calculating the model’s AIC and BIC. This methodology was then used to select between different neurovascular coupling assumptions underlying sMHM. The proposed framework was first validated on simulations and then applied to BOLD data from a motor task experiment. The models under comparison in the analysis of the actual data considered that vascular response was coupled to: (I) inhibition, (II) excitation, (III) both excitation and inhibition. Data was best described by model II, although model III was also supported.


Model comparison fMRI Stochastic differential equations Biophysical model 


  1. Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cambridge University Press.Google Scholar
  2. Aitchison, J., & Dunsmore, I. R. (1975). Statistical prediction analysis. Cambridge, UK: Cambridge University Press.Google Scholar
  3. Akaike, (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrox, & F. Caski (Eds.), Second International Symposium on Information Theory (p. 267). Budapest: Akademiai Kiado.Google Scholar
  4. Akaike, (1983). Information measures and model selection. Bulletin of the International Statistical Bulletin, 50, 277–290.Google Scholar
  5. Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25, 621–625.PubMedCrossRefGoogle Scholar
  6. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.PubMedCrossRefGoogle Scholar
  7. Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23, S220–S223.PubMedCrossRefGoogle Scholar
  8. Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The Balloon model. Medical Risk Management, 39, 855–864.CrossRefGoogle Scholar
  9. Carbonell, F., Biscay, R. J., Jímenez, J. C., & de la Cruz, H. (2007). Numerical simulation of nonlinear dynamical systems driven by commutative noise. Journal of Computational Physics, 226, 1219–1233.CrossRefGoogle Scholar
  10. Ceballos-Baumann, A. O. (2003). Functional imaging in Parkinson’s disease: Activation studies with PET, fMRI and SPECT. Journal of Neurology, 250, I15–I23.PubMedCrossRefGoogle Scholar
  11. Eke, A., & Hermán, P. (1999). Fractal analysis of spontaneous fluctuations in human cerebral hemoglobin content and its oxygenation level recorded by NIRS. Advance in Experimental Medicine and Biology, 47, 49–55.Google Scholar
  12. Elwell, C. E., Springett, R., Hillmann, E., & Delpy, D. T. (1999). Oscillations in cerebral haemodynamics. Implications for functional activation studies. Advance in Experimental Medicine and Biology, 471, 57–65.Google Scholar
  13. Escola, L., Michelet, T., Macia, F., Guehl, D., Bioulac, B., & Burbaud, P. (2003). Disruption of information processing in the supplementary motor area of the MPTP-treated monkey. A clue to the pathophysiology of akinesia? Brain, 126, 95–114.PubMedCrossRefGoogle Scholar
  14. Fergus, A., & Lee, K. S. (1997). GABAergic regulation of cerebral micro-vascular tone in the rat. Journal of Cerebral Blood Flow and Metabolism, 17, 992–1003.PubMedGoogle Scholar
  15. Friston, K. J. (2002). Bayesian estimation of dynamical systems: An application to fMRI. NeuroImage, 16, 513–530.PubMedCrossRefGoogle Scholar
  16. Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19, 1273–1302.PubMedCrossRefGoogle Scholar
  17. Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage, 12, 466–477.PubMedCrossRefGoogle Scholar
  18. Friston, K. J., Trujillo-Barreto, N. J., & Daunizeau, J. (2008). DEM: A variational treatment of dynamic systems. NeuroImage, 41, 849–885.PubMedCrossRefGoogle Scholar
  19. Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. London: Academic.Google Scholar
  20. Haslinger, B., Erhard, P., Kampfe, N., Boecker, H., Rummeny, E., & Schwaiger, M. (2001). Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain, 124, 558–570.PubMedCrossRefGoogle Scholar
  21. Hermán, P., & Eke, A. (2006). Nonlinear analysis of blood cell flux fluctuations in the rat brain cortex during stepwise hypotension challenge. Journal of Cerebral Blood Flow and Metabolism, 26, 1189–1197.PubMedGoogle Scholar
  22. Hochbruck, M., & Lubich, C. (1997). On Krylov subspace approximations to the matrix exponential operator. SIAM Journal on Numerical Analysis, 34, 1911–1925.CrossRefGoogle Scholar
  23. Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Stimulus-dependent BOLD and perfusion dynamics in human V1. NeuroImage, 9, 573–585.PubMedCrossRefGoogle Scholar
  24. Hu, Y., & Wilson, G. S. (1997). Rapid changes in local extracellular brain rat brain glucose observed with an in vivo glucose sensor. Journal of Neurochemistry, 68, 1745–1752.PubMedCrossRefGoogle Scholar
  25. Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Rev. Neuroscience, 5, 347–360.PubMedGoogle Scholar
  26. Jiménez, J. C. (2002). A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations. Applied Mathematics Letters, 15, 775–780.CrossRefGoogle Scholar
  27. Jiménez, J. C., Biscay, R., & Ozaki, T. (2006). Inference methods for discretely observed continuous-time stochastic volatility models: A commented overview. Asian-Pacific Financial Markets, 12, 109–141.CrossRefGoogle Scholar
  28. Jiménez, J. C., & Ozaki, T. (2003). Local linearization filters for non-linear continuous-discrete state space models with multiplicative noise. International Journal of Control, 76, 1159–1170.CrossRefGoogle Scholar
  29. Jiménez, J. C., & Ozaki, T. (2006). An approximate innovtion method for the estimation of diffusion processes from discrete data. Journal of Time Series Analysis, 27, 77–97.CrossRefGoogle Scholar
  30. Jiménez, J. C., Shoji, I., & Ozaki, T. (1999). Simulation of stochastic differential equations through the Local Linearization method. A comparative study. Journal Statistical Physics, 94, 587–602.CrossRefGoogle Scholar
  31. Kass, R. E., Raftery, A. E. (1993). Bayes factors and model uncertainty. Technical Report, 254, University of Washington.Google Scholar
  32. Katz, R. W. (1981). On some criteria for estimating the order of a Markov chain. Technometrics, 23, 243–249.CrossRefGoogle Scholar
  33. Kida, I., Rothman, D., & Hyder, F. (2007). Dynamics of changes in blood flow, volume and oxygenation: Implications for dynamic functional magnetic resonance imaging calibration. Journal of Cerebral Blood Flow and Metabolism, 27, 690–696.PubMedGoogle Scholar
  34. Kong, Y., Zheng, Y., Johnston, D., Martindale, J., Jones, M., Billings, S., & Mayhew, J. (2004). A model of the dynamic relationship between blood flow and volume changes during brain activation. Journal of Cerebral Blood Flow and Metabolism, 24, 1382–1392.PubMedCrossRefGoogle Scholar
  35. Krüger, G., & Glover, G. H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46, 631–637.PubMedCrossRefGoogle Scholar
  36. Lauritzen, M. (2005). Reading vascular changes in brain imaging: Is dendritic calcium the key? National Reviews Neuroscience, 6, 77–85.CrossRefGoogle Scholar
  37. Lilliefors, H. W. (1967). On the Komogorov–Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62, 399–402.CrossRefGoogle Scholar
  38. Lu, H., Golay, X., Pekar, J. J., & van Zijl, P. C. M. (2004). Sustained post-stimulus elevation in cerebral oxygen utilization after vascular recovery. Journal of Cerebral Blood Flow and Metabolism, 24, 764–770.PubMedGoogle Scholar
  39. Mattay, V. S., Tessitore, A., Callicott, A., Bertolino, A., Goldberg, T. E., & Chase, T. (2002). Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Annals of Neurology, 51, 156–164.PubMedCrossRefGoogle Scholar
  40. Mandeville, J. B., Marota, J. J., Ayata, C., Zararchuk, G., Moskowitz, M. A., & Rosen, B. (1999). Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. Journal of Cerebral Blood Flow and Metabolism, 19, 679–689.PubMedGoogle Scholar
  41. MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4, 415–447.CrossRefGoogle Scholar
  42. McNay, E. C., & Gold, P. E. (2002). Food for thought: fluctuations in brain extracellular glucose provide insight into the mechanisms of memory modulation. Behavioural and Cognitive Neuroscience Reviews, 1, 264–280.CrossRefGoogle Scholar
  43. Miyachi, S., Lu, X., Imanishi, M., Sawada, K., Nambu, A., & Takada, M. (2006). Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neuroscience Research, 56, 300–308.PubMedCrossRefGoogle Scholar
  44. Nambu, A. (2005). A new approach to understand the pathophysiology of Parkinson’s disease. Journal of Neurology, 252(Suppl 4), IV/1–IV/4.Google Scholar
  45. Nolsoe, K., Nielsen, J. N., & Madsen, H. (2000). Prediction-based estimating function for diffusion processes with measurement noise. Technical Reports, No. 10, Informatics and Mathematical Modelling, Technical University of Denmark.Google Scholar
  46. Ozaki, T. (1994). The local linearization filter with application to nonlinear system identifications. In h. Bozdogan (Ed.), Proceedings of the first US/Japan conference on the frontiers of statistical modeling: an informational approach (pp. 217–240). Dordrecht: Kluwer Academic.Google Scholar
  47. Pedroso, L. M., Marrero, A., de Arazoza, H. (2003). Nonlinear parametric model identification using genetic algorithms. Lecture Notes in Computer Science 2687 (473–480). Springer, Heidelberg.Google Scholar
  48. Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629.PubMedCrossRefGoogle Scholar
  49. Penny, W., Flandin, G., & Trujillo-Barreto, N. (2007). Bayesian comparison of spatially regularised general linear models. Human Brain Mapping, 28, 275–293.PubMedCrossRefGoogle Scholar
  50. Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Comparing dynamic causal models. NeuroImage, 22, 1157–1172.PubMedCrossRefGoogle Scholar
  51. Riera, J., Jimenez, J. C., Wan, X., Kawashima, R., & Ozaki, T. (2007). Nonlinear local electro-vascular coupling. Part II: From data to neuronal masses. Human Brain Mapping, 28, 335–354.PubMedCrossRefGoogle Scholar
  52. Riera, J., Watanabe, J., Kazuki, I., Naoki, M., Aubert, E., Ozaki, T., & Kawashima, R. (2004). A state-space model of the hemodynamic approach: Non-linear filtering of BOLD signals. NeuroImage, 21, 547–567.PubMedCrossRefGoogle Scholar
  53. Rodriguez-Rojas, R., Alvarez, L., Palmero, R., Alvarez, M., Carballo-Barreda, M., & Macias, R. (2005). Neural activity changes in the supplementary motor area induced by dopaminergic treatment in parkinsonian patients. Neurocomputing, 65, 741–749.CrossRefGoogle Scholar
  54. Sabatini, U., Boulanouar, K., Fabre, N., Martin, F., Carel, C., & Colonnese, C. (2000). Cortical motor reorganization in akinetic patients with Parkinson’s disease. Brain, 123, 394–403.PubMedCrossRefGoogle Scholar
  55. Schroeter, M., Schmiedel, O., & von Cramon, D. (2004). Spontaneous low-frequency oscillations decline in the aging brain. Journal of Cerebral Blood Flow and Metabolism, 24, 1183–1191.PubMedGoogle Scholar
  56. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  57. Schweppe, F. (1965). Evaluation of likelihood function for Gaussian signals. IEEE Transactions on Information Theory, 11, 61–70.CrossRefGoogle Scholar
  58. Shibata, R. (1976). Selection of the order of an autoregressive model by Akaikes’s information criterion. Biometrika, 63, 117–126.CrossRefGoogle Scholar
  59. Shulman, R. G., Hyder, F., & Rothman, D. L. (2001). Cerebral energetics and the glycogen shunt: Neurochemical basis of functional imaging. Proceedings of the National Academy of Sciences of the United States of America, 98, 6417–6422.PubMedCrossRefGoogle Scholar
  60. Solo, V. (1980). Some aspects of recursive parameter estimation. International Journal of Control, 32, 395–410.CrossRefGoogle Scholar
  61. Sotero, R. C., & Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. NeuroImage, 35, 149–165.PubMedCrossRefGoogle Scholar
  62. Talairach, J., & Tournoux, P. (1988). A co-planar stereotaxic atlas of a human brain. Stuttgart: Thieme.Google Scholar
  63. Tamura, H., Kaneko, H., Kawasaki, K., & Fujita, I. (2004). Presumed inhibitory neurons in the macaque inferior temporal cortex: Visual response properties and functional interactions with adjacent neurons. Journal of Neurophysiology, 91, 2782–2796.PubMedCrossRefGoogle Scholar
  64. Valabrègue, R., Aubert, A., Burger, J., Bittoun, J., & Costalat, R. (2003). Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. Journal of Cerebral Blood Flow and Metabolism, 23, 536–545.PubMedGoogle Scholar
  65. Valdés, P., Jimenez, J. C., Riera, J., Biscay, R., & Ozaki, T. (1999). Nonlinear EEG analysis based on a neural mass model. Biological Cybernetics, 81, 415–424.PubMedCrossRefGoogle Scholar
  66. Worsley, K. J., Liao, C., Aston, J., Petre, V., Duncan, G. H., Morales, F., & Evans, A. C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15(1), 15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roberto C. Sotero
    • 1
  • Nelson J. Trujillo-Barreto
    • 2
  • Juan C. Jiménez
    • 3
  • Felix Carbonell
    • 3
  • Rafael Rodríguez-Rojas
    • 4
  1. 1.Brain Dynamics DepartmentCuban Neuroscience CenterHavanaCuba
  2. 2.Brain Dynamics DepartmentCuban Neuroscience CenterHavanaCuba
  3. 3.Departament of Interdisciplinary MathematicsInstitute of Cybernetics, Mathematics and PhysicsHavanaCuba
  4. 4.International Center for Neurological Restoration (CIREN)HavanaCuba

Personalised recommendations