Skip to main content
Log in

Threshold fatigue and information transfer

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neurons in vivo must process sensory information in the presence of significant noise. It is thus plausible to assume that neural systems have developed mechanisms to reduce this noise. Theoretical studies have shown that threshold fatigue (i.e. cumulative increases in the threshold during repetitive firing) could lead to noise reduction at certain frequencies bands and thus improved signal transmission as well as noise increases and decreased signal transmission at other frequencies: a phenomenon called noise shaping. There is, however, no experimental evidence that threshold fatigue actually occurs and, if so, that it will actually lead to noise shaping. We analyzed action potential threshold variability in intracellular recordings in vivo from pyramidal neurons in weakly electric fish and found experimental evidence for threshold fatigue: an increase in instantaneous firing rate was on average accompanied by an increase in action potential threshold. We show that, with a minor modification, the standard Hodgkin–Huxley model can reproduce this phenomenon. We next compared the performance of models with and without threshold fatigue. Our results show that threshold fatigue will lead to a more regular spike train as well as robustness to intrinsic noise via noise shaping. We finally show that the increased/reduced noise levels due to threshold fatigue correspond to decreased/increased information transmission at different frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aizenman, C. D., & Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 82, 1697–1709.

    CAS  PubMed  Google Scholar 

  • Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.

    CAS  PubMed  Google Scholar 

  • Azouz, R., & Gray, C. M. (2000). Dynamic Spike Threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 8110–8115.

    Article  CAS  PubMed  Google Scholar 

  • Barlow, H. B., & Levick, W. R. (1969a). Changes in the maintained discharge with adaptation level in the cat retina. Journal of Physiology (London), 202, 699–718.

    CAS  Google Scholar 

  • Barlow, H. B., & Levick, W. R. (1969b). Three factors limiting the reliable detection of light by the retinal ganglion cells of the cat. Journal of Physiology (London), 200, 1–24.

    CAS  Google Scholar 

  • Bastian, J. (1981). Electrolocation I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli. Journal of Comparative Physiology A, 144, 465–479.

    Article  Google Scholar 

  • Bastian, J., & Nguyenkim, J. (2001). Dendritic Modulation of Burst-like firing in sensory neurons. Journal of Neurophysiology, 85, 10–22.

    CAS  PubMed  Google Scholar 

  • Bastian, J., Chacron. M. J., & Maler, L. (2002). Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. Journal of Neuroscience, 22, 4577–4590.

    CAS  PubMed  Google Scholar 

  • Bastian, J., Chacron, M. J., & Maler, L. (2004). Plastic and non-plastic cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron, 41, 767–779.

    Article  CAS  PubMed  Google Scholar 

  • Borst, A., & Haag, J. (2001). Effects of mean firing on neural information rate. Journal of Computational Neuroscience, 10, 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Bryant, H. L., & Segundo, J. P. (1976). Spike initiation by transmembrane current: a white-noise analysis. Journal of Physiology, 260, 279–314.

    CAS  PubMed  Google Scholar 

  • Burns, B. D., & Webb, A. C. (1970). Spread of responses in the cerebral cortex to meaningful stimuli. Nature, 225, 469–470.

    Article  CAS  PubMed  Google Scholar 

  • Chacron, M. J. (2006). Nonlinear information processing in a model sensory system. Journal of Neurophysiology, 95, 2933–2946.

    Article  PubMed  Google Scholar 

  • Chacron, M.J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Physical Review Letters, 85, 1576–1579.

    Article  CAS  PubMed  Google Scholar 

  • Chacron, M. J., Longtin, A., & Maler, L. (2001a). Simple models of bursting and non-bursting electroreceptors. Neurocomputing, 38, 129–139.

    Article  Google Scholar 

  • Chacron, M. J., Longtin, A., & Maler, L. (2001b). Negative interspike interval correlations increase the neuronal capacity for encoding time-varying stimuli. Journal of Neuroscience, 21, 5328–5343.

    CAS  Google Scholar 

  • Chacron, M. J., Pakdaman, K., & Longtin, A. (2003a). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15, 253–278.

    Article  Google Scholar 

  • Chacron, M. J., Doiron, B., Maler, L., Longtin, A., & Bastian, J. (2003b). Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature, 423, 77–81.

    Article  CAS  Google Scholar 

  • Chacron, M. J., Lindner, B., & Longtin, A. (2004a). Noise shaping by interval correlations increases information transfer. Physical Review Letters, 92, 080601.1–080601.4.

    Article  Google Scholar 

  • Chacron, M. J., Lindner, B., & Longtin, A. (2004b). ISI correlations and information transfer. Fluctuations and Noise Letters, 4, L195–L205.

    Article  Google Scholar 

  • Chacron, M. J., Longtin, A., & Maler, L. (2004c). To burst or not to burst? Journal of Computational Neuroscience, 17, 127–136.

    Article  Google Scholar 

  • Chacron, M. J., Maler, L., & Bastian, J. (2005a). Feedback and feedforward control of frequency tuning to naturalistic stimuli. Journal of Neuroscience, 25, 5521–5532.

    Article  CAS  Google Scholar 

  • Chacron, M. J., Maler, L., & Bastian, J. (2005b). Electroreceptor neuron dynamics shape information transmission. Nature Neuroscience, 8, 673–678.

    Article  CAS  Google Scholar 

  • Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.

    Book  Google Scholar 

  • Cox, D. R., & Lewis, P. A. W. (1966). The statistical analysis of series of events. London: Methuen.

    Google Scholar 

  • Doiron, B., Laing, C., Longtin, A., & Maler, L. (2002). Ghostbursting: a novel neuronal burst mechanism. Journal of Computational Neuroscience, 12, 5–25.

    Article  PubMed  Google Scholar 

  • Doiron, B., Chacron, M. J., Maler, L., Longtin, A., & Bastian, J. (2003). Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature, 421, 539–543.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F. R., Mehaffey, W. H., & Turner, R. W. (2005). Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential. Journal of Neurophysiology, 94, 3836–3848.

    Article  CAS  PubMed  Google Scholar 

  • Gabbiani, F., & Koch, C. (1996). Coding of time-varying signals in spike trains of integrate-and-fire neurons with random threshold. Neural Computation, 8, 44–66.

    Article  Google Scholar 

  • Gabbiani, F., Metzner, W., Wessel, R., & Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564–567.

    Article  CAS  PubMed  Google Scholar 

  • Geisler, C. D., & Goldberg, J. M. (1966). A stochastic model of the repetitive activity of neurons. Biophysical Journal, 6, 53–69.

    Article  PubMed  Google Scholar 

  • Gestri, G., Masterbroek, H. A. K., & Zaagman, W. H. (1980). Stochastic constancy, variability and adaptation of spike generation: performance of a giant neuron in the visual system of the fly. Biological Cybernetics, 38, 31–40.

    Article  Google Scholar 

  • Goldberg, J. M. (2000). Afferent diversity and the organisation of central vestibular pathways. Experimental Brain Research, 130, 277–297.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology London, 117, 500–544.

    CAS  Google Scholar 

  • Holden, A. V. (1976). Models of the stochastic activity of neurons. Berlin: Springer.

    Google Scholar 

  • Jaeger, D., & Bauer, J. M. (1994). Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: an intracellular in vitro and in vivo investigation. Experimental Brain Research, 100, 200–214.

    Article  CAS  Google Scholar 

  • Jolivet, R., Rauch, A., Luscher, H. R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21, 35–49.

    Google Scholar 

  • Koch, C. (1999). Biophysics of computation. New York: Oxford University Press.

    Google Scholar 

  • Köppl, C. (1997). Frequency tuning and spontaneous activity in the auditory nerve and Cochlear Nucleus Magnocellularis of the Barn Owl Tyto alba. Journal of Neurophysiology, 77, 364–377.

    PubMed  Google Scholar 

  • Lebedev, M. A., & Nelson, R. J. (1996). High-frequency vibratory sensitive neurons in monkey primate somatosensory cortex: entrained and nonentrained responses to vibration during the performance of vibratory-cued hand movements. Experimental Brain Research, 111, 313–325.

    Article  CAS  Google Scholar 

  • Lemon, N., & Turner, R. W. (2000). Conditional spike backpropagation generates burst discharge in a sensory neuron. Journal of Neurophysiology, 84, 1519–1530.

    CAS  PubMed  Google Scholar 

  • Lindner, B., Chacron, M. J., & Longtin, A. (2005). Integrate-and-fire neurons with threshold noise: A tractable model of how interspike interval correlations affect neuronal signal transmission. Physical Review E, 72, 021911.

    Article  Google Scholar 

  • Liu, Y. H., & Wang, X. J. (2001). Spike Frequency adaptation of a generalized leaky integrate-and-fire neuron. Journal of Computational Neuroscience, 10, 25–45.

    Article  CAS  PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  • Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. Neural Computation, 11, 1797–1829.

    Article  CAS  PubMed  Google Scholar 

  • Mar, D. J., Chow, C. C., Gerstner, W., Adams, R. W., & Collins, J. J. (1999). Noise Shaping in populations of coupled model neurons. Proceedings of the National Academy of Sciences, 96, 10450–10455.

    Article  CAS  Google Scholar 

  • Metzner, W., Koch, C., Wessel, R., & Gabbiani, F. (1998). Feature extraction by burst-like spike patterns in multiple sensory maps. Journal of Neuroscience, 18, 2283–2300.

    CAS  PubMed  Google Scholar 

  • Mickus, T., Jung, H. Y., & Spruston, N. (1999). Properties of slow cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. Biophysical Journal, 76, 846–860.

    Article  CAS  PubMed  Google Scholar 

  • Norsworthy, S. R., Schreier, R., & Temes, G. C. (Eds.) (1997). Delta-sigma data converters. Piscataway, NJ: IEEE Press.

    Google Scholar 

  • Oswald, A. M. M., Chacron, M. J., Doiron, B., Bastian, J., & Maler, L. (2004). Parallel processing of sensory input by bursts and isolated spikes. Journal of Neuroscience, 24, 4351–4362.

    Article  CAS  PubMed  Google Scholar 

  • Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. Journal of Neuroscience, 20, 5392–5400.

    CAS  PubMed  Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R. R., & Bialek, W. (1996). Spikes: Exploring the neural code. Cambridge, MA: MIT.

    Google Scholar 

  • Rudolph, M., & Destexhe, A. (2003). The discharge variability of neocortical neurons during high-conductance states. Neuroscience, 119, 855–873.

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi, S. G., Chacron, M. J., Taylor, M. C., & Cullen, K. E. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. Journal of Neuroscience, 27, 771–781.

    Article  CAS  PubMed  Google Scholar 

  • Sah, P. (1996). Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends in Neurosciences, 19, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, C. E. (1948). The mathematical theory of communication. Bell Systems Technical Journal, 27, 379–423, 623–656.

    Google Scholar 

  • Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J. (1993). Novel neural circuits based on stochastic pulse coding noise feedback pulse coding. International Journal of Electronics, 74, 359–368.

    Article  Google Scholar 

  • Shin, J. (2001). Adaptation in spiking neurons based on the noise shaping neural coding hypothesis. Neural Networks, 14, 907–919.

    Article  CAS  PubMed  Google Scholar 

  • Shinomoto, S., Sakai, Y., & Funahashi, S. (1999). The Ornstein–Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Computation, 11, 935–951.

    Article  CAS  PubMed  Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13, 334–350.

    CAS  PubMed  Google Scholar 

  • Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal. Nature Reviews Neuroscience, 6, 4766–4778.

    Article  Google Scholar 

  • Steriade, M. (1978). Cortical long-axoned cells and putative interneurons during the sleep-waking cycle. Behavioural Brain Research, 3, 465–514.

    Google Scholar 

  • Teich, M. C. (1992). Fractal neuronal firing patterns. In: T. McKenna, J. Davis, & S. F. Zornetzer (Eds) Single neuron computation (pp. 589–622). San Diego: Academic Press.

    Google Scholar 

  • Teich, M. C., & Khanna, S. M. (1985). Pulse-number distributions for the neural spike train in the cat’s auditory nerve. Journal of the Accoustical Society of America 77, 1110–1128.

    Article  CAS  Google Scholar 

  • Treves, A. (1996). Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems, 4, 259–284.

    Article  Google Scholar 

  • Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79, 1549–1566.

    CAS  PubMed  Google Scholar 

  • Wiesenfeld, K., & Satija, I. (1987). Noise tolerance of frequency-locked dynamics. Physical Review B, 36, 2483–2492.

    Article  Google Scholar 

  • Yacomotti, A. M., Eguia, M. C., Aliaga, J., Martinez, O. E., & Mindlin, G. B. (1999). Interspike time distribution in noise driven excitable systems. Physical Review Letters, 83, 292–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank J. Benda for useful discussions. This research was supported by CIHR (M.J.C., A.L.) and NSERC (A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice J. Chacron.

Additional information

Action Editor: David Golomb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacron, M.J., Lindner, B. & Longtin, A. Threshold fatigue and information transfer. J Comput Neurosci 23, 301–311 (2007). https://doi.org/10.1007/s10827-007-0033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0033-y

Keywords

Navigation