A perfect electrically tunable graphene-based metamaterial absorber

Abstract

In this paper, a metamaterial absorber based on graphene is proposed, designed and simulated numerically using multilayer structures. Before describing our work, the performance response of a three-layer structure is studied concerning one cylinder as a unit cell. Then, by varying the chemical potential of graphene (Fermi level of graphene) by applying external potential, the center frequency of this absorber can be adjusted. We will prove that by increasing the number of cylinders as fundamental elements in the unit cell, the bandwidth is also adjustable. Also, the center frequency can be affected by changing the dimensions of fundamental elements. Considering the above-mentioned items, the structure is investigated through increasing the graphene layers in which the absorber’s frequency response is wider respected to previous structures and the center frequency is adjustable as a result of variations in the chemical potential of graphene layers. It is shown that the proposed perfect absorber’s central frequency shift through graphene’s voltage variation is about 0.15 THz which can be increased to 0.3 THz by changing radius. In some of the introduced absorbers, the maximum value of the absorption has reached over 95%. The most important advantage of the proposed structure, which is the main purpose of designing terahertz metamaterial absorbers, is its adjustable bandwidth and center frequency, and simple fabrication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    Article  Google Scholar 

  2. 2.

    Rostami, A., Rasooli, H., Baghban, H.: Terahertz Technology: Fundamentals and Applications, vol. 77. Springer, Berlin (2010)

    Google Scholar 

  3. 3.

    Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photonics Rev. 5, 124–166 (2011)

    Article  Google Scholar 

  4. 4.

    Tao, Hu., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)

    Article  Google Scholar 

  5. 5.

    Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012)

    Article  Google Scholar 

  6. 6.

    Asl, A.B., Rostami, A., Amiri, I.S.: Terahertz bandpass filter design using multilayer metamaterials. Opt. Quantum Electron. 52(3), 1–13 (2020)

    Article  Google Scholar 

  7. 7.

    Zhao, Yi., Huang, Q., Cai, H., Lin, X., He, H., Ma, T., Yalin, Lu.: Dual-band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures. Opt. Express 27(4), 5217–5229 (2019)

    Article  Google Scholar 

  8. 8.

    Tavousi, A., Rostami, A., Rostami, G., Dolatyari, M.: 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J. Lightwave Technol. 33(22), 4640–4647 (2015)

    Article  Google Scholar 

  9. 9.

    Chen, D., Yang, J., Zhang, J., Huang, J., Zhang, Z.: Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons. Sci. Rep. 7(1), 1–8 (2017)

    Article  Google Scholar 

  10. 10.

    Goudarzi, K., Matloub, S., Rostami, A.: Multi-wavelengths Terahertz emitter using graphene aperiodic super-cells. Optik 179, 379–384 (2019)

    Article  Google Scholar 

  11. 11.

    Han, J., Gu, J., Lu, X., He, M., Xing, Q., Zhang, W.: Broadband resonant terahertz transmission in a composite metal-dielectric structure. Opt. Express 17(19), 16527–16534 (2009)

    Article  Google Scholar 

  12. 12.

    Janfaza, M., Mansouri-Birjandi, M.A., Tavousi, A.: Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings. Opt. Commun. 440, 75–82 (2019)

    Article  Google Scholar 

  13. 13.

    Garcia-Garcia, J., Bonache, J., Gil, I., Martin, F., Velazquez-Ahumada, M.D., Martel, J.: Miniaturized microstrip and CPW filters using coupled metamaterial resonators. IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006)

    Article  Google Scholar 

  14. 14.

    Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  Google Scholar 

  15. 15.

    Zhang, Y., Feng, Y., Zhu, Bo., Zhao, J., Jiang, T.: Graphene-based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 22(19), 22743–22752 (2014)

    Article  Google Scholar 

  16. 16.

    Ma, Y., Chen, Q., Grant, J., Saha, S.C., Khalid, A., Cumming, D.R.S.: A terahertz polarization insensitive dual-band metamaterial absorber. Opt. Lett. 36(6), 945–947 (2011)

    Article  Google Scholar 

  17. 17.

    Zhang, Y., Shi, Y., Liang, C.-H.: Broadband tunable graphene-based metamaterial absorber. Opt. Mater. Express 6(9), 3036–3044 (2016)

    Article  Google Scholar 

  18. 18.

    Wang, B.-X., Wang, L.-L., Wang, G.-Z., Huang, W.-Q., Li, X.-F., Zhai, X.: Frequency continuous tunable terahertz metamaterial absorber. J. Lightwave Technol. 32(6), 1183–1189 (2014)

    Article  Google Scholar 

  19. 19.

    Luo, C., Li, D., Luo, Q., Yue, J., Gao, P., Yao, J., Ling, F.: Design of a tunable multiband terahertz waves absorber. J. Alloys Compd. 652, 18–24 (2015)

    Article  Google Scholar 

  20. 20.

    Shen, X., Cui, T.J.: Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber. J. Opt. 14(11), 114012 (2012)

    Article  Google Scholar 

  21. 21.

    Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Li, X.F., Zhai, X.: Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 26(2), 111–114 (2014)

    Article  Google Scholar 

  22. 22.

    Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Li, X.F., Zhai, X.: A simple design of ultra-broadband and a Polarization Insensitive terahertz metamaterial absorber. Appl. Phys. A 115, 1187–1192 (2013)

    Article  Google Scholar 

  23. 23.

    Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012)

    Article  Google Scholar 

  24. 24.

    Alaee, R., Farhat, M., Rockstuhl, C., Lederer, F.: A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20(27), 28017–28024 (2012)

    Article  Google Scholar 

  25. 25.

    Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  Google Scholar 

  26. 26.

    Xu, B.-Z., Chang-qing, Gu., Li, Z., Niu, Z.-Y.: A novel structure for tunable terahertz absorber based on graphene. Opt. Express 21(20), 23803–23811 (2013)

    Article  Google Scholar 

  27. 27.

    Wang, J., Jiang, Y.: Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials. Opt. Express 25(5), 5206–5216 (2017)

    Article  Google Scholar 

  28. 28.

    Zhu, Bo., Feng, Y., Zhao, J., Huang, Ci., Jiang, T.: Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97(5), 051906 (2010)

    Article  Google Scholar 

  29. 29.

    Zhu, Bo., Huang, Ci., Feng, Y., Zhao, J., Jiang, T.: Dual-band switchable metamaterial electromagnetic absorber. Prog. Electromagn. Res. 24, 121–129 (2010)

    Article  Google Scholar 

  30. 30.

    Cai, Y., Kai-Da, Xu.: Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt. Express 26(24), 31693–31705 (2018)

    Article  Google Scholar 

  31. 31.

    Yang, J., Zhu, Z., Zhang, J., Guo, C., Wei, Xu., Liu, K., Yuan, X., Qin, S.: Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep. 8(1), 1–8 (2018)

    Article  Google Scholar 

  32. 32.

    Lei, L., Li, S., Huang, H., Tao, K., Ping, Xu.: Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 26(5), 5686–5693 (2018)

    Article  Google Scholar 

  33. 33.

    Huynh, T.V., et al.: Electrically tunable graphene-based metamaterials: a brief review. Mod. Phys. Lett. B 33(33), 1950404 (2019)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19(2), 026222 (2006)

    Article  Google Scholar 

  35. 35.

    Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B 75(16), 165407 (2007)

    Article  Google Scholar 

  36. 36.

    Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: On the universal ac optical background in graphene. New J. Phys. 11(9), 095013 (2009)

    Article  Google Scholar 

  37. 37.

    Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)

    Article  Google Scholar 

  38. 38.

    Gómez-Díaz, J.-S., Perruisseau-Carrier, J.: Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 21(13), 15490–15504 (2013)

    Article  Google Scholar 

  39. 39.

    Mencarelli, D., et al.: Efficient and versatile graphene-based multilayers for EM field absorption. Appl. Phys. Lett. 109(9), 093103 (2016)

    Article  Google Scholar 

  40. 40.

    Asl, A.B., Rostami, A., Amiri, I.S.: Radiation pattern direction control in nano-antenna (tunable nano-antenna). Opt. Quantum Electron. 51(11), 365 (2019)

    Article  Google Scholar 

  41. 41.

    Clemens, M., Weiland, T.: Discrete electromagnetism with the finite integration technique. Prog. Electromagn. Res. 32, 65–87 (2001)

    Article  Google Scholar 

  42. 42.

    Bhattacharyya, A.K.: Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, vol. 179. Wiley, Hoboken (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Rostami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beheshti Asl, A., Pourkhalil, D., Rostami, A. et al. A perfect electrically tunable graphene-based metamaterial absorber. J Comput Electron (2021). https://doi.org/10.1007/s10825-021-01664-0

Download citation

Keywords

  • Terahertz band
  • Multilayer metasurface
  • Tunable perfect absorber
  • Terahertz metamaterials