Abstract
In this paper, a metamaterial absorber based on graphene is proposed, designed and simulated numerically using multilayer structures. Before describing our work, the performance response of a three-layer structure is studied concerning one cylinder as a unit cell. Then, by varying the chemical potential of graphene (Fermi level of graphene) by applying external potential, the center frequency of this absorber can be adjusted. We will prove that by increasing the number of cylinders as fundamental elements in the unit cell, the bandwidth is also adjustable. Also, the center frequency can be affected by changing the dimensions of fundamental elements. Considering the above-mentioned items, the structure is investigated through increasing the graphene layers in which the absorber’s frequency response is wider respected to previous structures and the center frequency is adjustable as a result of variations in the chemical potential of graphene layers. It is shown that the proposed perfect absorber’s central frequency shift through graphene’s voltage variation is about 0.15 THz which can be increased to 0.3 THz by changing radius. In some of the introduced absorbers, the maximum value of the absorption has reached over 95%. The most important advantage of the proposed structure, which is the main purpose of designing terahertz metamaterial absorbers, is its adjustable bandwidth and center frequency, and simple fabrication.
This is a preview of subscription content, access via your institution.






References
- 1.
Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)
- 2.
Rostami, A., Rasooli, H., Baghban, H.: Terahertz Technology: Fundamentals and Applications, vol. 77. Springer, Berlin (2010)
- 3.
Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photonics Rev. 5, 124–166 (2011)
- 4.
Tao, Hu., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)
- 5.
Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012)
- 6.
Asl, A.B., Rostami, A., Amiri, I.S.: Terahertz bandpass filter design using multilayer metamaterials. Opt. Quantum Electron. 52(3), 1–13 (2020)
- 7.
Zhao, Yi., Huang, Q., Cai, H., Lin, X., He, H., Ma, T., Yalin, Lu.: Dual-band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures. Opt. Express 27(4), 5217–5229 (2019)
- 8.
Tavousi, A., Rostami, A., Rostami, G., Dolatyari, M.: 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J. Lightwave Technol. 33(22), 4640–4647 (2015)
- 9.
Chen, D., Yang, J., Zhang, J., Huang, J., Zhang, Z.: Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons. Sci. Rep. 7(1), 1–8 (2017)
- 10.
Goudarzi, K., Matloub, S., Rostami, A.: Multi-wavelengths Terahertz emitter using graphene aperiodic super-cells. Optik 179, 379–384 (2019)
- 11.
Han, J., Gu, J., Lu, X., He, M., Xing, Q., Zhang, W.: Broadband resonant terahertz transmission in a composite metal-dielectric structure. Opt. Express 17(19), 16527–16534 (2009)
- 12.
Janfaza, M., Mansouri-Birjandi, M.A., Tavousi, A.: Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings. Opt. Commun. 440, 75–82 (2019)
- 13.
Garcia-Garcia, J., Bonache, J., Gil, I., Martin, F., Velazquez-Ahumada, M.D., Martel, J.: Miniaturized microstrip and CPW filters using coupled metamaterial resonators. IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006)
- 14.
Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)
- 15.
Zhang, Y., Feng, Y., Zhu, Bo., Zhao, J., Jiang, T.: Graphene-based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 22(19), 22743–22752 (2014)
- 16.
Ma, Y., Chen, Q., Grant, J., Saha, S.C., Khalid, A., Cumming, D.R.S.: A terahertz polarization insensitive dual-band metamaterial absorber. Opt. Lett. 36(6), 945–947 (2011)
- 17.
Zhang, Y., Shi, Y., Liang, C.-H.: Broadband tunable graphene-based metamaterial absorber. Opt. Mater. Express 6(9), 3036–3044 (2016)
- 18.
Wang, B.-X., Wang, L.-L., Wang, G.-Z., Huang, W.-Q., Li, X.-F., Zhai, X.: Frequency continuous tunable terahertz metamaterial absorber. J. Lightwave Technol. 32(6), 1183–1189 (2014)
- 19.
Luo, C., Li, D., Luo, Q., Yue, J., Gao, P., Yao, J., Ling, F.: Design of a tunable multiband terahertz waves absorber. J. Alloys Compd. 652, 18–24 (2015)
- 20.
Shen, X., Cui, T.J.: Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber. J. Opt. 14(11), 114012 (2012)
- 21.
Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Li, X.F., Zhai, X.: Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 26(2), 111–114 (2014)
- 22.
Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Li, X.F., Zhai, X.: A simple design of ultra-broadband and a Polarization Insensitive terahertz metamaterial absorber. Appl. Phys. A 115, 1187–1192 (2013)
- 23.
Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012)
- 24.
Alaee, R., Farhat, M., Rockstuhl, C., Lederer, F.: A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20(27), 28017–28024 (2012)
- 25.
Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)
- 26.
Xu, B.-Z., Chang-qing, Gu., Li, Z., Niu, Z.-Y.: A novel structure for tunable terahertz absorber based on graphene. Opt. Express 21(20), 23803–23811 (2013)
- 27.
Wang, J., Jiang, Y.: Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials. Opt. Express 25(5), 5206–5216 (2017)
- 28.
Zhu, Bo., Feng, Y., Zhao, J., Huang, Ci., Jiang, T.: Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97(5), 051906 (2010)
- 29.
Zhu, Bo., Huang, Ci., Feng, Y., Zhao, J., Jiang, T.: Dual-band switchable metamaterial electromagnetic absorber. Prog. Electromagn. Res. 24, 121–129 (2010)
- 30.
Cai, Y., Kai-Da, Xu.: Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt. Express 26(24), 31693–31705 (2018)
- 31.
Yang, J., Zhu, Z., Zhang, J., Guo, C., Wei, Xu., Liu, K., Yuan, X., Qin, S.: Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep. 8(1), 1–8 (2018)
- 32.
Lei, L., Li, S., Huang, H., Tao, K., Ping, Xu.: Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 26(5), 5686–5693 (2018)
- 33.
Huynh, T.V., et al.: Electrically tunable graphene-based metamaterials: a brief review. Mod. Phys. Lett. B 33(33), 1950404 (2019)
- 34.
Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19(2), 026222 (2006)
- 35.
Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B 75(16), 165407 (2007)
- 36.
Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: On the universal ac optical background in graphene. New J. Phys. 11(9), 095013 (2009)
- 37.
Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)
- 38.
Gómez-Díaz, J.-S., Perruisseau-Carrier, J.: Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 21(13), 15490–15504 (2013)
- 39.
Mencarelli, D., et al.: Efficient and versatile graphene-based multilayers for EM field absorption. Appl. Phys. Lett. 109(9), 093103 (2016)
- 40.
Asl, A.B., Rostami, A., Amiri, I.S.: Radiation pattern direction control in nano-antenna (tunable nano-antenna). Opt. Quantum Electron. 51(11), 365 (2019)
- 41.
Clemens, M., Weiland, T.: Discrete electromagnetism with the finite integration technique. Prog. Electromagn. Res. 32, 65–87 (2001)
- 42.
Bhattacharyya, A.K.: Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, vol. 179. Wiley, Hoboken (2006)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Beheshti Asl, A., Pourkhalil, D., Rostami, A. et al. A perfect electrically tunable graphene-based metamaterial absorber. J Comput Electron (2021). https://doi.org/10.1007/s10825-021-01664-0
Received:
Accepted:
Published:
Keywords
- Terahertz band
- Multilayer metasurface
- Tunable perfect absorber
- Terahertz metamaterials