First-principles calculations of the electronic and optical properties of \(\text {WSe}_2/\text {Cd}_{0.9}\text {Zn}_{0.1}\text {Te}\) van der Waals heterostructure

Abstract

Electronic and optical properties of monolayer tungsten selenide \((\text {WSe}_2)\) and cadmium zinc telluride \((\text {Cd}_{0.9}\text {Zn}_{0.1}\text {Te})\) heterostructure with VdW, i.e., Van der Waals attractions between two layers, are explored using first-principles calculations. From the results, it is discovered that the proposed heterostructure of \(\text {WSe}_2/\text {Cd}_{0.9}\text {Zn}_{0.1}\text {Te}\) results into nearly direct band gap semiconducting material and has staggered (Type-II) band gap alignment which is required for opto electronic applications. Moreover, the results suggest that for monolayer \(\text {WSe}_2\) and \(\text {Cd}_{0.9}\text {Zn}_{0.1}\text {Te}\), optical absorption is significant in a limited range of visible spectrum (\(\approx\) 420–470 nm) and (\(\approx\) 390–430 nm), respectively, but more absorption takes place in the infrared (IR) region for individual layers. However, the absorption in the \(\text {WSe}_2/\text {Cd}_{0.9}\text {Zn}_{0.1}\text {Te}\) heterostructure results in the red shift phenomenon and high absorption is achieved in the entire visible spectrum (\(\approx\) 410–710 nm). Along with the absorption spectrum, dielectric function, refractive index and optical conductivity of the heterostructure are also calculated agreeing with the trends of each other. Desirable band alignment and high absorption coefficient in the visible spectrum can find applications in photovoltaic cells and other opto electronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Choi, W.C., Han, N., Park, G., Akinwande, J., Lee, D., Young, A.: Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today (2017). https://doi.org/10.1016/j.mattod.2016.10.002

    Article  Google Scholar 

  2. 2.

    Duan, X., Wang, C., Pan, A., Yu, R., Duan, X.: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenge. Chem. Soc. Rev. 44, 8859–8876 (2015)

    Article  Google Scholar 

  3. 3.

    Vogt, P., et al.: Silicine: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, Art. no. 155501 (2012)

  4. 4.

    Jeon, J.J., Jeon, S.K., Yoo, S., Park, G., Lee, J.-H., Sungjoo, T.: Controlling grain size and continuous layer growth in two-dimensional MoS2 films for nanoelectronic device application. IEEE Trans. Nanotechnol. 14, 238–242 (2015). https://doi.org/10.1109/TNANO.2014.2381667

    Article  Google Scholar 

  5. 5.

    Eftekhari, A.: Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J. Mater. Chem. A 5(35), 18299–18325 (2017)

    Article  Google Scholar 

  6. 6.

    Wurstbauer, U., Miller, B., Parzinger, E., Holleitner, A.W.: “Light” matter interaction in transition metal dichalcogenides and their heterostructures. J. Phys. D Appl. Phys. 50(17), Art. no. 173001 (2017)

  7. 7.

    Chhowalla, M., Shin, H.S., Eda, G., Li, L., Loh, K.P., Zhang, H.: The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)

    Article  Google Scholar 

  8. 8.

    Shi, H., et al.: Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7(2), 1072–1080 (2013)

    Article  Google Scholar 

  9. 9.

    Chang, Y.M., Kim, H., Lee, J.H., Song, Y.W.: Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett. 97(21), Art. no. 211102 (2010)

  10. 10.

    Eftekhari, A.: Tungsten dichalcogenides (\((WS_2), (WSe_2)\), and \((WTe_2)\)). J. Mater. Chem. A. 5, 55 (2017). https://doi.org/10.1039/C7TA04268J

    Article  Google Scholar 

  11. 11.

    Kumar, S., Schwingenschlögl, U.: Thermoelectric response of bulk and monolayer \((MoSe_2)\) and \((WSe_2)\). Chem. Mater. 27, 150205124741008 (2015). https://doi.org/10.1021/cm504244b

    Article  Google Scholar 

  12. 12.

    Cheiwchanchamnangij, T., Lambrecht, W.R.: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85(20), Art. no. 205302 (2012)

  13. 13.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  Google Scholar 

  14. 14.

    Tsai, M.-L., et al.: Monolayer MoS2 heterojunction solar cells. ACS Nano 8(8), 8317–8322 (2014)

    Article  Google Scholar 

  15. 15.

    James, R.B., Schlesinger, T.E., Lund, J., Schieber, M.: \(\text{Cd}_{1-x}\text{ Zn}_x\text{ Te }\) spectrometers for gamma and X-ray applications. In: Schlesinger, T.E., James, R.B. (Eds.) Vol. 43, pp .335–381. Academic Press, San Diego (1995)

  16. 16.

    Sordo, S., Abbene, L., Caroli, E., Mancini, A.M., Zappettini, A., Ubertini, P.: Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications sensors. Appl. Sens 9, 3491–526 (2018). https://doi.org/10.3390/s90503491

    Article  Google Scholar 

  17. 17.

    Cheng, J., Wang, C., Zou, X., Liao, L.: Adv. Opt. Mater. 2019(7), 1800441 (2009). https://doi.org/10.1002/adom.201800441

    Article  Google Scholar 

  18. 18.

    Syllaios, A.L., Dean, P.-K., Brian., T.: Optical absorption coefficient of CdZnTe. Proc. SPIE Int. Soc. Opt. Eng. (1994). https://doi.org/10.1117/12.189248

  19. 19.

    Zakharov, O., Rubio, A., Blase, X., Cohen, M.L., Louie, S.G.: Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B Condens. Matter 50(15), 10780–10787 (1994)

    Article  Google Scholar 

  20. 20.

    Shkir, M., Khan, M.T., Ashraf, I.M., et al.: High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals. Sci. Rep. 9, 12436 (2019). https://doi.org/10.1038/s41598-019-48621-3

    Article  Google Scholar 

  21. 21.

    Novoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.C.: 2D materials and van der Waals heterostructures. Science 353(6298), Art. no. aac9439 (2016)

  22. 22.

    Wu, K.M., Gao, H., Yunzhi, H., Yang, A., Wei, J.: Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J. Mater. Chem. A 7, 55–8 (2019). https://doi.org/10.1039/C9TA00280D

    Article  Google Scholar 

  23. 23.

    Wang, M., Chamberland, N., Breau, L., et al.: An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2, 385–389 (2010)

    Article  Google Scholar 

  24. 24.

    Lin, Y., Ren, P., Weic, C.: Fabrication of \((\text{ MoS}_2)/(\text{ TiO}_2)\) heterostructures with enhanced photocatalytic activity. CrystEngComm. 22, 3377–3526 (2019)

    Google Scholar 

  25. 25.

    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, Art. no. 11169 (1996)

  26. 26.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  27. 27.

    Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations, Phys. Rev. B 13, Art. no. 5188 (1976)

  28. 28.

    Kochar, R., Choudhary, S.: \((\text{ MoS}_2)\)/phosphorene heterostructure for optical absorption in visible region. IEEE J. Quantum Electron. 54(4), Art no. 7000306 (2018)

  29. 29.

    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–99 (2006)

    Article  Google Scholar 

  30. 30.

    Tran, F., Blaha, B.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, Art. no. 226401 (2009)

  31. 31.

    Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, New York (2014). https://doi.org/10.1017/CBO9780511805769

    Google Scholar 

  32. 32.

    Griffithis, D.J.: Introduction to Electrodynamics. Prentice Hall, Emglewood Cliffs (1999)

    Google Scholar 

  33. 33.

    Kang, J., Tongay, S., Zhou, J., Li, J.: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). https://doi.org/10.1063/1.4774090

    Article  Google Scholar 

  34. 34.

    Schutte, W.J., De Boer, J.L., Jellinek, F.: Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70(2), 207–209 (1987). https://doi.org/10.1016/0022-4596(87)90057-0

    Article  Google Scholar 

  35. 35.

    Tao, F., Gangqiang, Z., Jian, Y., Jiong, L., Zheng, J., Xu, L., Tao, W., Jie, W.: XAFS and XRD studies of the Cd1-xZnxTe crystal fine structure. J. Phys. Conf. Ser. 430(2013), 012087 (2013). https://doi.org/10.1088/1742-6596/430/1/012087

    Article  Google Scholar 

  36. 36.

    Li, M.-Y., Chen, C.-H., Shi, Y., Li, L.-J.: Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19, 322–335 (2015)

    Article  Google Scholar 

  37. 37.

    Ding, A., Wang, Y., Ni, Y., Shi, J., Shi, L., Siqi, A.: First principles study of structural, vibrational and electronic properties of graphene-like \((MX_2)\) (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Phys. B Condens. Matter 406, 2254–2260 (2011). https://doi.org/10.1016/j.physb.2011.03.044

    Article  Google Scholar 

  38. 38.

    Zhu, Z., Cheng, Y., Schwingenschlögl, U.: Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B. 84, 153402 (2011). https://doi.org/10.1103/PhysRevB.84.153402

    Article  Google Scholar 

  39. 39.

    Won, S., Yun, S.W., Han, S., Cheol, H., Kim, I.G., Lee, J.D.: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-\((MX_2)\) semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85(3), 033305 (2012). https://doi.org/10.1103/PhysRevB.85.033305

    Article  Google Scholar 

  40. 40.

    Shi, H.P., Zhang, H., Yakobson, A., Boris, Y.-W.: Quasiparticle band structures and optical properties of strained monolayer \((MoS_2)\) and \((WS_2)\). Phys. Rev. B 87, 66 (2012). https://doi.org/10.1103/PhysRevB.87.155304

    Article  Google Scholar 

  41. 41.

    Choudhary, S., Garg, A.: Enhanced absorption in \((WSe_2)/Hg_{0.33}Cd_{0.66}Te\) heterostructure for application in solar cell absorbers. IEEE Trans. Nanotechnol. (2019). https://doi.org/10.1109/TNANO.2019.2941989

  42. 42.

    Swati, J.: Photoluminescence study of cadmium zinc telluride. Graduate Theses, Dissertations, and Problem Reports. 1252. https://researchrepository.wvu.edu/etd/1252 (2001)

  43. 43.

    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–99 (2006)

    Article  Google Scholar 

  44. 44.

    Sheng, X.C.: Spectrum and Optical Property of Semiconductor, 3rd edn., pp. 76–94. Science Press, Beijing (1992)

    Google Scholar 

  45. 45.

    Kong, L.-J., Liu, G.-H., Zhang, Y.-J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6, 10919–10929 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anurag Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Maahich, A. & Pal, J. First-principles calculations of the electronic and optical properties of \(\text {WSe}_2/\text {Cd}_{0.9}\text {Zn}_{0.1}\text {Te}\) van der Waals heterostructure. J Comput Electron 20, 13–20 (2021). https://doi.org/10.1007/s10825-021-01659-x

Download citation

Keywords

  • Opto electronics
  • Density functional theory (DFT)
  • Transition metal dichalcogenides (TMDs)
  • Optical properties
  • Van der Waals heterostructure