Improvement of RF MEMS devices by spring constant scaling laws


The technology for radio frequency micro-electro-mechanical system (RF MEMS) is well established. In the next phase of miniaturization, RF MEMS transforming into RF nano-electro-mechanical system (NEMS) requires scaling laws. For MEMS devices, vertical scaling laws are available in the literature. However, existing scaling laws are isotropic and not valid for the majority of the MEMS devices. Like VLSI technology, the scaling in the MEMS is asymmetric and needs optimization in each direction. In the MEMS, depending upon the working principle, the scaling laws vary from device to device. In the present work, spring constant scaling laws for the electrostatic RF MEMS devices are derived given the device performance. The scaling laws are derived in such a way that existing limitations of the MEMS technology like low switching speed, high pull-in voltage, stiction, etc., are minimized and the response of the switch is improved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    De Groot, W.A., Webster, J.R., Felnhofer, D., Gusev, E.P.: Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices. IEEE Trans. Device Mater. Reliab. 9(2), 190–202 (2009).

    Article  Google Scholar 

  2. 2.

    Zaghloul, U., Piazza, G.: Highly scalable NEMS relays with stress-tuned switching voltage using piezoelectric buckling actuators. IEEE Trans. Electron Devices 61(10), 3520–3528 (2014).

    Article  Google Scholar 

  3. 3.

    Wautelet, M.: Scaling laws in the macro, micro and nanoworlds. Eur. J. Phys. 22(6), 601–611 (2001).

    Article  Google Scholar 

  4. 4.

    Trimmer, W.S.N.: Microrobots and micromechanical systems. Sensors and Actuators 19(3), 267–287 (1989).

    Article  Google Scholar 

  5. 5.

    Bansal, D., Bajpai, A., Kumar, P., Kaur, M., Kumar, A.: Effect of Stress on Pull-in Voltage of RF MEMS SPDT Switch. IEEE Trans. Electron Devices 67(5), 2147–2152 (2020).

    Article  Google Scholar 

  6. 6.

    Bansal, D., Bajpai, A., Mehta, K., Kumar, P., Kumar, A.: Improved Design of Ohmic RF MEMS Switch for Reduced Fabrication Steps. IEEE Trans. Electron Devices 66(10), 4361–4366 (2019).

    Article  Google Scholar 

  7. 7.

    Bansal, D., Kumar, A., Sharma, A., Kumar, P., Rangra, K.J.: Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst. Technol. 20(2), 337–340 (2013).

    Article  Google Scholar 

  8. 8.

    Rangra, K., et al.: Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: Design and fabrication. Sensors Actuators A Phys. 123–124, 505–514 (2005).

    Article  Google Scholar 

  9. 9.

    Jindal, S.K., Magam, S.P., Shaklya, M.: Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions. J. Comput. Electron. 17(4), 1780–1789 (2018).

    Article  Google Scholar 

  10. 10.

    Varma, M.A., Jindal, S.K.: Novel design for performance enhancement of a touch-mode capacitive pressure sensor: theoretical modeling and numerical simulation. J. Comput. Electron. 17(3), 1324–1333 (2018).

    Article  Google Scholar 

  11. 11.

    Pu, S.H., Holmes, A.S., Yeatman, E.M., Papavassiliou, C., Lucyszyn, S.: Stable zipping RF MEMS varactors. J. Micromechanics Microengineering 20(3), 035030 (2010).

    Article  Google Scholar 

  12. 12.

    Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology. John Wiley & Sons Inc, Hoboken, NJ, USA (2003)

    Google Scholar 

  13. 13.

    He, X., et al.: Design and consideration of wafer level micropackaging for distributed RF MEMS phase shifters. Microsyst. Technol. 14(4–5), 575–579 (2007).

    Article  Google Scholar 

  14. 14.

    S. Gong, H. Shen, and N. S. Barker (2011) “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches.” IEEE Trans Microw Theory Tech. 59(4); 894–900. doi:

  15. 15.

    Bansal, D., Bajpai, A., Kumar, P., Kumar, A., Kaur, M., Rangra, K.: Design and fabrication of a reduced stiction radio frequency MEMS switch. J. Micro/Nanolithography, MEMS, MOEMS 14(3), 035002 (2015).

    Article  Google Scholar 

  16. 16.

    Van Spengen, W.M., Puers, R., De Wolf, I.: On the physics of stiction and its impact on the reliability of microstructures. J. Adhes. Sci. Technol. 17(4), 563–582 (2003).

    Article  Google Scholar 

  17. 17.

    a Koszewski, F. Souchon, C. Dieppedale, D. Bloch, and T. Ouisse (2013) “Physical model of dielectric charging in MEMS.” J. Micromechanics Microengineering. 23(4); 045019. doi:

  18. 18.

    Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R., Elwenspoek, M.: Stiction in surface micromachining. J. Micromechanics Microengineering 6(4), 385–397 (1996).

    Article  Google Scholar 

  19. 19.

    S. Melle et al (2007) “Investigation of Stiction Effect in Electrostatic Actuated RF MEMS Devices.” in 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. 21(2); 173–176, doi:

Download references

Author information



Corresponding author

Correspondence to Deepak Bansal.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bansal, D., Kumar, P. & Kumar, A. Improvement of RF MEMS devices by spring constant scaling laws. J Comput Electron (2021).

Download citation


  • Scaling law
  • Miniaturization
  • MEMS
  • Spring constant