Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths

Abstract

A novel porous core photonic crystal fiber (PCF) sensor is reported for label-free detection of different concentrations of ethylene glycol present in aqueous solution, over a wavelength range from 1 to 2 μm. Both core and cladding are designed with elliptical air holes, which are arranged in a hexagonal structure with TOPAS as the background material. Various geometrical parameters are judiciously optimized to achieve an efficient sensor. Finite element analysis is employed for numerical simulation of the proposed structure, investigating various sensing parameters including effective refractive index, effective material loss, confinement loss, nonlinearity coefficient, shifts in peak reflected wavelengths, sensitivity, f-parameter, spot size and beam divergence angle. Simulation outcomes reveal a significant shift in the sensing parameters in response to changes in concentration of ethylene glycol, confirming the effectiveness of the sensor. Optimum wavelength sensitivity of 13,144.86 nm/RIU and resolution of \(7.46 \times 10^{ - 7}\) RIU are attained, which provide a significant theoretical foundation for the design of novel photonic sensors. Benchmarking of the proposed PCF sensor is done against related research results to prove its superiority in terms of resolution and sensitivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Kashyap, R., Wyatt, R., McKee, P.F.: Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings. Electron. Lett. 29, 1025–1026 (1993)

    Article  Google Scholar 

  2. 2.

    Shigehara M., Satoh T., Inoue A., Hattori Y.: Optical fiber identification system using fiber Bragg gratings. In: Opt. Fiber Commun OFC, San Jose, CA, USA, 162–163 (1996). https://doi.org/10.1109/OFC.1996.907730.

  3. 3.

    Hoo, Y.L., Jin, W., Ju, J., Ho, H.L.: Numerical investigation of a depressed-index core photonic crystal fiber for gas sensing. Sens. Actuat. B 139, 460–465 (2009)

    Article  Google Scholar 

  4. 4.

    Abinash, P., Puspa Devi, P.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020)

    Article  Google Scholar 

  5. 5.

    Lin, S.S., Hwang, S.K., Liu, J.M.: Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses. Opt. Express 22(4), 4152–4160 (2014)

    Article  Google Scholar 

  6. 6.

    Ademgil, H., Haxha, S.: Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions, Optik – Int. J. Light Electron Opt. 127(16), 6653–6660 (2016)

    Article  Google Scholar 

  7. 7.

    Ademgil, H.: Highly sensitive octagonal photonic crystal fiber based sensor. Opt. Int. J. Light Electron Opt. 125(20), 6274–6278 (2014)

    Article  Google Scholar 

  8. 8.

    Hou, Y., Fan, F., Jiang, Z.W., Wang, X.H., Chang, S.J.: Highly birefringent polymer terahertz fiber with honeycomb cl adding. Opt. Int. J. Light Electron Opt. 124(17), 3095–3098 (2013)

    Article  Google Scholar 

  9. 9.

    Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)

    Article  Google Scholar 

  10. 10.

    Asaduzzaman S., Arif M.F.H., Ahmed K., Dhar P: Highly sensitive simple structure circular photonic crystal fiber-based chemical sensor. In: 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 151–154 (2015).

  11. 11.

    Razzak, S.A., Khan, M.A.G., Begum, F., Kaijage, S.: Guiding properties of a decagonal photonic crystal fiber. J. Microwav. Optoelectron. Electromagn. Appl. 6(1), 44–49 (2007)

    Google Scholar 

  12. 12.

    Ademgil, H.: Highly sensitive octagonal photonic crystal fiber based sensor. Opt.-Int. J Light Electron Opt. 125, 6274–6278 (2014)

    Article  Google Scholar 

  13. 13.

    Fini, J.M.: Microstructure fibers for optical sensing in gasses and liquids. Meas. Sci. Technol. 15, 1120–1128 (2004)

    Article  Google Scholar 

  14. 14.

    Knight, J.C.: Photonic crystal fibers. Nature 424(6950), 847–851 (2003)

    Article  Google Scholar 

  15. 15.

    Sun, B., Chen, M.Y., Zhang, Y.K., Yang, J.C., Yao, J.Q., Cui, H.X.: Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing. Opt. Exp. 19(5), 4091–4100 (2011)

    Article  Google Scholar 

  16. 16.

    Abbott, D., Zhang, X.C.: T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)

    Article  Google Scholar 

  17. 17.

    Vigneswaran, D., Ayyanar, N., Sharma, M., Sumathi, M., Rajan, M., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Actuators A 269, 22–28 (2018)

    Article  Google Scholar 

  18. 18.

    Panda A., Pukhrambam P.D., Keiser G.: Realization of sucrose sensor using photonic waveguide: an application to biophotonics. In: International Workshop on Fiber Optics in Access Networks (FOAN), Bosnia and Herzegovina, IEEE, 23–25 (2019).

  19. 19.

    Sarkar, P., Panda, A., Palai, G.: Analysis of 90° bend photonic crystal waveguide: an application to optical interconnect. Indian J. Phys. 93, 1495–1500 (2019)

    Article  Google Scholar 

  20. 20.

    Cubillas, A.M., Unterkofler, S., Euser, T.G., Etzold, B.J.M., Jones, A.C., Sadler, P.J., Wasserscheid, P., Russell, P.: Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42, 8629–8648 (2013)

    Article  Google Scholar 

  21. 21.

    Pinto, A.M.R., Baptista, J.M., Santos, J.L., Lopez, M.A., Frazão, O.: Micro-displacement sensor based on a hollow-core photonic crystal fiber. Sensors 12, 17497–17503 (2012)

    Article  Google Scholar 

  22. 22.

    Kuhlmey, B.T., Eggleton, B.J., Wu, D.K.C.: Fluid-filled solid-core photonic bandgap fibers. J. Lightwave Technol. 27, 1617–1630 (2008)

    Article  Google Scholar 

  23. 23.

    Abinash, P., Puspa Devi, P., Gerd, K: Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl. Phys. A 126(3), 153 (2020)

    Article  Google Scholar 

  24. 24.

    Atakaramians, S., Afshar, S.V., Fischer, B.M., Abbott, D., Monro, T.M.: Porous fibers: a novel approach to low loss THz waveguides. Opt. Express. 16, 8845–8854 (2008)

    Article  Google Scholar 

  25. 25.

    Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss porous-core photonic crystal fiber. IEEE Photonics J. 4(6), 2315–2325 (2012). https://doi.org/10.1109/JPHOT.2012.2231939

    Article  Google Scholar 

  26. 26.

    Kaijage, S.F., Ouyang, Z., Jim, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photon. Technol. Lett. 25(15), 1454–1457 (2013)

    Article  Google Scholar 

  27. 27.

    Sultana, J., et al.: Highly birefringent elliptical core photonic crystal fiber for tera hertz application. Opt. Commun. 407, 92–96 (2018)

    Article  Google Scholar 

  28. 28.

    Sayed, A., Kawsar, A.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)

    Article  Google Scholar 

  29. 29.

    Ademgil, H., Haxha, S.: PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15, 31833–31842 (2015)

    Article  Google Scholar 

  30. 30.

    Ademgil, H.: Highly sensitive octagonal photonic crystal fiber based sensor. Optik 125(20), 6274–6278 (2014)

    Article  Google Scholar 

  31. 31.

    Mirza, S.A., et al.: FEM based highly sensitive dual core temperature sensor: design and analysis. OSA Contin. 2(9), 2581–2592 (2019)

    Article  Google Scholar 

  32. 32.

    Hasan, Md.R., Anower, Md.S., Hasan, Md.I., Razzak, S.M.A.: polarization maintaining low-loss slotted core kagome lattice thz fiber. IEEE Photonics. Technol. Lett. 28(16), 1751–1754 (2016)

    Article  Google Scholar 

  33. 33.

    Bao, H.L., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express. 20, 29507–29517 (2012)

    Article  Google Scholar 

  34. 34.

    Olyaee, S., Seifouri, M., Karami, R.: Designing a high sensitivity hexagonal nano-cavity photonic crystal resonator for the purpose of sea water salinity sensing. Opt. Quant. Electron. 51, 97 (2019)

    Article  Google Scholar 

  35. 35.

    Amiri, I.S., Paul, B.K., Ahmed, K., Aly, A.H., Zakaria, R., Yupapin, P., Vigneswaran, D.: Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. 61, 847–852 (2019)

    Article  Google Scholar 

  36. 36.

    Yong, P.: Structural prediction and overall performances of CrSi2 disilicides: DFT investigations. ACS Sustain. Chem. Eng. 8, 11024–11030 (2020)

    Google Scholar 

  37. 37.

    Yong, P., Shuang, C., Yanlin, J.: First-principles investigation of phonon dynamics and electrochemical performance of TiO2-xoxideslithium-ion batteries. Int. J. Hydrog. Energy. 45, 6207–6216 (2020)

    Article  Google Scholar 

  38. 38.

    Yong, P.: The structural stability and optical properties of NiPt nanomaterial from first-principles investigations. Mat. Sci. Semicon. Proc. 120, 105306 (2020)

    Article  Google Scholar 

  39. 39.

    Christos, M., et al.: High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4765 (2013)

    Article  Google Scholar 

  40. 40.

    Balakrishnan, J., Fischer, B.M., Abbott, D.: Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl. Opt. 48(12), 2262–2266 (2009)

    Article  Google Scholar 

  41. 41.

    Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016)

    Article  Google Scholar 

  42. 42.

    Huang, Y., Yong, X., Yariv, A.: Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182 (2004)

    Article  Google Scholar 

  43. 43.

    Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999)

    Article  Google Scholar 

  44. 44.

    Bise R.T., Trevor D.: Solgel-derived microstructured fibers: fabrication and characterization. In: Optical Fiber Communication Conference (p. OWL6), Optical Society of America (2005)

  45. 45.

    Petrovich M.N., Van Brakel A., Poletti F., Mukasa K., Austin E., Finazzi V., Petropoulos P., O'Driscoll E., Watson M., Delmonte T., Monro T.M.: Microstructured fibers for sensing applications. In: Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, International Society for Optics and Photonics, 6005 (2005)

  46. 46.

    Kim, J.C., et al.: The fabrication of a photonic crystal fiber and measurement of its properties. J. Opt. Soc. Korea 7(2), 79–83 (2003)

    Article  Google Scholar 

  47. 47.

    Gerosa, R.M., Spadoti, D.H., De Matos, C.J., Menezes, L.D.S., Franco, M.A.: Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber. Opt. Express 19(24), 24687–24698 (2011)

    Article  Google Scholar 

  48. 48.

    Luo, M., Liu, Y.G., Wang, Z., Han, T., Wu, Z., Guo, J., Huang, W.: Twin-resonance coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber. Opt. Express 21(25), 30911–30917 (2013)

    Article  Google Scholar 

  49. 49.

    Monro, T.M., Belardi, W., Furusawa, K., Baggett, J.C., Broderick, N.G.R., Richardson, D.J.: Sensing with microstructured optical fibers. Meas. Sci. Technol. 12(7), 854 (2001)

    Article  Google Scholar 

  50. 50.

    Saitoh, K., Koshiba, M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quant. Electron. 38, 927–933 (2002)

    Article  Google Scholar 

  51. 51.

    White, T.P., et al.: Multipole method for microstructured optical fibers, I. formulation. J. Opt. Soc. Am. B 19, 2322 (2002)

    Article  Google Scholar 

  52. 52.

    Suganthy, M., Paul, B.K., Ahmed, K., Islam, M.I., Jabin, M.A., Bahar, A.N., Mani Rajan, M.S.: Analysis of optical sensitivity of analytes in aqua solutions. Optik (2018). https://doi.org/10.1016/j.ijleo.2018.10.002

    Article  Google Scholar 

  53. 53.

    Paul, B.K., et al.: Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications. Res. Phys. 11, 638–642 (2018)

    Google Scholar 

  54. 54.

    Liang, J., Ren, L., Chen, N.: Broadband, low-loss, dispersion flattened porous-core photonic band-gap fiber for terahertz (THz)-wave propagation. Opt. Commun. 295, 257–261 (2013)

    Article  Google Scholar 

  55. 55.

    Islam, M.S., et al.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 34, 6–11 (2017)

    Article  Google Scholar 

  56. 56.

    Noskovičová, E. et al.: Kerr index of cyclic olefin co/polymers for THz pulse propagation simulations. In: 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE (2016). https://doi.org/10.1109/IRMMW-THz.2016.7758774.

  57. 57.

    Abinash, P., Puspa Devi, P., Gerd, K.: Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst Technol (2020). https://doi.org/10.1007/s00542-020-05005-2

    Article  Google Scholar 

  58. 58.

    Rifat, A.A., et al.: Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Exp. 24(3), 2485–2495 (2016)

    Article  Google Scholar 

  59. 59.

    Kawsar, A., et al.: Ultra high birefringence and lower beat length for square shape PCF: analysis effect on rotation angle and eccentricity. Alex. Eng. J. 57, 3683–3691 (2015)

    Google Scholar 

  60. 60.

    Paul, D., Biswas, R., Bhattacharyya, N.S.: Investigating photonic crystal fiber within E to L communication band with different material composites. Opt. Int. J. Light Electron. Opt. 126(23), 4640–4645 (2015)

    Article  Google Scholar 

  61. 61.

    Shadidul Islam, Md., et al.: Liquid-infiltrated photonic crystal fiber for sensing purpose. Des. Anal. Alex. Eng. J. 57, 1459–1466 (2018)

    Article  Google Scholar 

  62. 62.

    Kawsar, A., et al.: Tetra-core surface plasmon resonance based biosensor for alcohol sensing. Physica B 570, 48–52 (2019)

    Article  Google Scholar 

  63. 63.

    Wenchao, Li., Zhiquan, Li., Jiahuan, He., Liyang, C.: Design and performance of a composite grating-coupled surface plasmon resonance trace liquid concentration sensor. Sensors 19, 5502 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abinash Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Pukhrambam, P.D. Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths. J Comput Electron (2021). https://doi.org/10.1007/s10825-020-01650-y

Download citation

Keywords

  • Microstructure PCF
  • FEM
  • Ethylene glycol sensor
  • Sensing parameters