Skip to main content
Log in

GaN HEMT on Si substrate with diamond heat spreader for high power applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Currently, the GaN-on-silicon high electron mobility transistor (HEMT) is a promising candidate to replace the Si Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for high power electronics circuits. However, self-heating is still a challenging issue to be addressed, especially for high-current applications. In this paper, a GaN-on-Si HEMT with a diamond (Dia) heat spreader is proposed to suppress the self-heating effect. The performance of the proposed device is analyzed and compared with conventional GaN-on-Si and also GaN-on-SiC devices. The analysis was carried-out using technology computer aided design. The GaN-on-Si with diamond heat spreader suppresses the self-heating in the device and achieves higher saturation drain current than conventional GaN-on-Si. In addition, GaN-on-Si with Diamond heat spreader yields a higher transconductance and cut-off frequency than GaN-on-Si. This improved structure will provide a low cost device with enhanced thermal characteristics for higher power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jarndal, A., Markos, A.Z., Kompa, G.: Improved modeling of GaN HEMT on Si substrate for design of RF power amplifiers. IEEE Trans. Microw. Theory Tech. 59(3), 644–651 (2011)

    Article  Google Scholar 

  2. Jarndal, A., Bassal, A.: A broadband hybrid GaN cascode low noise amplifier for WiMax applications. J. RF Microw. Comput. Aided Eng, Int (2018). https://doi.org/10.1002/mmce.21456

    Book  Google Scholar 

  3. Jarndal, A., Hussein, A., Crupi, G., Caddemi, A.: Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers. Int. J. Numer. Model. 33(3), e2585 (2019)

    Google Scholar 

  4. Liu, J., Guo, Y., Zhang, J., Yao, J., Huang, X., Huang, C., Huang, Z., Yang, K.: Analytical model for the potential and electric field distributions of AlGaN/GaN HEMTs with gate-connected FP based on equivalent potential method. Superlattices Microstruct. 138, 106327 (2020)

    Article  Google Scholar 

  5. Bagnall, Kevin R., Wang, Evelyn N.: Theory of thermal time constants in GaN high-electron-mobility transistors. IEEE Trans. Compon. Packag. Manuf. Technol. 8(4), 606–620 (2018)

    Article  Google Scholar 

  6. Tadjer, M.J., et al.: Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline diamond heat-spreading films. IEEE Electron Device Lett. 33(1), 23–25 (2012)

    Article  Google Scholar 

  7. Wang, A., et al.: Impact of intrinsic stress in diamond capping layers on the electrical behavior of AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60(10), 3149–3156 (2013)

    Article  Google Scholar 

  8. Wang, W., et al.: Polarization modulation effect of BeO on AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 115(1–5), 103502 (2019)

    Article  Google Scholar 

  9. Nilsson, P.-Å., et al.: Influence of field plates and surface traps on microwave silicon carbide MESFETs. IEEE Trans. Electron. Devices 55(8), 1875–1879 (2008)

    Article  Google Scholar 

  10. Huang, H., et al.: Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Trans. Power Electron. 29(5), 2164–2173 (2014)

    Article  Google Scholar 

  11. Mizutani, T., et al.: A study on current collapse in AlGaN/GaN HEMTs induced by bias stress. IEEE Trans. Electron. Devices 50(10), 2015–2020 (2003)

    Article  Google Scholar 

  12. Joh, J., del Alamo, J.A., Jimenez, J.: A simple current collapse measurement technique for GaN high-electron mobility transistors. IEEE Electron Device Lett. 29(7), 665–668 (2008)

    Article  Google Scholar 

  13. Saito, W., et al.: Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs. IEEE Electron Device Lett. 31(7), 659–661 (2010)

    Article  Google Scholar 

  14. Kuzmik, J., et al.: Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs. Phys. Stat. Sol. (A) 204(6), 2019–2022 (2007)

    Article  Google Scholar 

  15. Mitrofanov, O., Manfra, M.: Review mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattices Microstruct. 34, 33–53 (2003)

    Article  Google Scholar 

  16. Ramanan, N., Lee, B., Misra, V.: Device modeling for understanding AlGaN/GaN HEMT gate-lag. IEEE Trans. Electron. Devices 61(6), 2012–2012 (2014)

    Article  Google Scholar 

  17. Zhou, X., et al.: Transient simulation of AlGaN/GaN hemt including trapping and thermal effects. In: Proceedings of the ICSICT2014, Guilin, China (2014)

  18. Diederich, L., Kuttel, O.M., Aebi, P., Schlapbach, L.: Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy. Surface Sci. 418, 219–239 (1998)

    Article  Google Scholar 

  19. Anvarifard, M.K., Orouji, A.A.: Improvement of self-heating effect in a novel nanoscale SOI MOSFET with undoped region: a comprehensive investigation on DC and AC operations. Superlattice Microstruct. 60, 561–579 (2013). https://doi.org/10.1016/j.spmi.2013.06.003

    Article  Google Scholar 

  20. Augustine Fletcher, A.S., Nirmal, D., Arivazhagan, L., Ajayan, J., Varghese, A.: Enhancement of johnson figure of merit in III–V HEMT combined with discrete field plate and AlGaN blocking layer. Int. J. RF Microw. Comput. Aided Eng. 30(2), 1–9 (2019).

    Google Scholar 

  21. Arivazhagan, L., Nirmal, D., Chander, S., Ajayan, J., Godfrey, D., Rajkumar, J.S., Lakshmi, S.B.: Variable thermal resistance model of GaN-on-SiC with substrate scalability. J. Comput. Electron. 19(4), 1546–1554 (2020)

    Article  Google Scholar 

  22. Subramani, N.K., et al.: Identification of GaN buffer traps in microwave power AlGaN/GaN HEMTs through low frequency S-parameters measurements and TCAD-based physical device simulations. IEEE J. Electron Devices Soc. 5(3), 175–181 (2017)

    Article  MathSciNet  Google Scholar 

  23. Arivazhagan, L., et al.: Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications. Int. J. Electron. Commun. (AEÜ) 108, 189–194 (2019)

    Article  Google Scholar 

  24. Basumatary, B., Maity, S.: Deboraj Muchahary Improvement of drain current of AlGaN/GaN-HEMT through the modification of negative differential conductance (NDC), current collapse, self-heating and optimization of doublehetero structure. Superlattices Microstruct. 97, 606–616 (2016)

    Article  Google Scholar 

  25. Bertoluzza, F., Delmonte, N., Menozzi, R.: Three-dimensional finite-element thermal simulation of GaN-based HEMTs. Microelectron. Reliab. 49, 468–473 (2009)

    Article  Google Scholar 

  26. El-Helou, A., Cui, Y., Tadjer, M.J., Anderson, T.J., Francis, D., Feygelson, T., Pate, B., Hobart, K.D., Raad, P.E.: Full thermal characterization of AlGaN/GaN high electron mobility transistors on silicon, silicon carbide, and diamond substrates using a reverse modeling approach. Semicond. Sci. Technol. 36(1), 1–10 (2020)

    Google Scholar 

  27. Farahmand, M., et al.: Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and terniaries. IEEE Trans. Electron. Devices 48(3), 535–542 (2001)

    Article  Google Scholar 

  28. Device Simulator Atlas Ver. 5.10.0.R. Atlas User’s Manual, Silvaco Int., Santa Clara, CA (2005)

  29. Wang, Y.: Electrical and thermal analysis of gallium Nitride Hemts, Thesis, Naval Postgraduate School Monterey, California (2009)

  30. Horcajo, M., et al.: Transient thermoreflectance for gate temperature assessment in pulse operated GaN-based HEMTs. IEEE Electron Device Lett. 37(9), 1197–1200 (2016)

    Article  Google Scholar 

  31. Pavlidis, G., Kendig, D., Heller, E.R., Graham, S.: Transient thermal characterization of AlGaN/GaN HEMTs under pulsed biasing. IEEE Transact. Electron. Devices 65(5), 1753–1758 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the University of Sharjah, Sharjah, United Arab Emirates and Karunya Institute of Technology and Sciences, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nirmal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arivazhagan, L., Jarndal, A. & Nirmal, D. GaN HEMT on Si substrate with diamond heat spreader for high power applications. J Comput Electron 20, 873–882 (2021). https://doi.org/10.1007/s10825-020-01646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01646-8

Keywords

Navigation