The effect of the electric field on the output performance of triboelectric nanogenerators

Abstract

Energy harvesting using triboelectric nanogenerators (TENGs) is an effective strategy to supply power to microelectronics, the Internet of Things, etc. Generally, the output performance of a triboelectric nanogenerator is limited by the breakdown of air. Hence, we systematically investigate a TENG operating in the contact-separation mode and single-electrode mode from the perspective of the electric field that builds up between the metal electrode and dielectric material. Finite-element simulations are conducted to illustrate the difference between such devices in terms of the static electric field and output performance. The TENG operating in the contact-separation mode has a lower built-in electric field but can deliver much higher transferred charges, short-circuit current, and open-circuit voltage. Furthermore, the output performance of the TENG operating in the single-electrode mode can be enhanced by reducing the gap distance. These findings not only illustrate the process of contact electrification but also show the great potential of such devices for realizing noncontact energy conversion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Qi, J., Yang, P., Newcombe, L., Peng, X., Yang, Y., Zhao, Z.: An overview of data fusion techniques for Internet of Things enabled physical activity recognition and measure. Inf. Fusion 55, 269–280 (2020)

    Google Scholar 

  2. 2.

    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  3. 3.

    Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Google Scholar 

  4. 4.

    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mobile Comput. 5(4), 277–298 (2009)

    Google Scholar 

  5. 5.

    Liu, K., Liu, Y., Lin, D., Pei, A., Cui, Y.: Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018)

    Google Scholar 

  6. 6.

    Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., He, X.: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018)

    Google Scholar 

  7. 7.

    Fan, F.-R., Tian, Z.-Q., Lin Wang, Z.: Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012)

    Google Scholar 

  8. 8.

    Wang, Z.L.: Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2015)

    Google Scholar 

  9. 9.

    Niu, S., Liu, Y., Chen, X., Wang, S., Zhou, Y.S., Lin, L., Xie, Y., Wang, Z.L.: Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12, 760–774 (2015)

    Google Scholar 

  10. 10.

    Yin, X., Liu, D., Zhou, L., Li, X., Zhang, C., Cheng, P., Guo, H., Song, W., Wang, J., Wang, Z.L.: Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano 13(1), 698–705 (2019)

    Google Scholar 

  11. 11.

    Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)

    Google Scholar 

  12. 12.

    Kim, D., Lee, S., Ko, Y., Kwon, C.H., Cho, J.: Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments. Nano Energy 44, 228–239 (2018)

    Google Scholar 

  13. 13.

    Gu, G.Q., Han, C.B., Lu, C.X., He, C., Jiang, T., Gao, Z.L., Li, C.J., Wang, Z.L.: Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 11(6), 6211–6217 (2017)

    Google Scholar 

  14. 14.

    Wang, X., Niu, S., Yi, F., Yin, Y., Hao, C., Dai, K., Zhang, Y., You, Z., Wang, Z.L.: Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017)

    Google Scholar 

  15. 15.

    Wang, S., Xie, Y., Niu, S., Lin, L., Wang, Z.L.: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014)

    Google Scholar 

  16. 16.

    Wang, Q., Chen, M., Li, W., Li, Z., Chen, Y., Zhai, Y.: Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers. Nano energy 41, 128–138 (2017)

    Google Scholar 

  17. 17.

    Wang, J., Li, X., Zi, Y., Wang, S., Li, Z., Zheng, L., Yi, F., Li, S., Wang, Z.L.: A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015)

    Google Scholar 

  18. 18.

    Song, W., Yin, X., Liu, D., Ma, W., Zhang, M., Li, X., Cheng, P., Zhang, C., Wang, J., Wang, Z.L.: A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.103997

    Google Scholar 

  19. 19.

    Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., Wang, Z.L.: Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8, 1–8 (2017)

    Google Scholar 

  20. 20.

    Shi, P., Deng, D., He, C., Ji, L., Duan, Y., Han, T., Suo, B., Zou, W.: Mechanochromic luminescent materials with aggregation-induced emission: mechanism study and application for pressure measuring and mechanical printing. Dyes Pigm. 173, 107884 (2020)

    Google Scholar 

  21. 21.

    Gray, T., Bassiri, N., Kirby, N., Stathakis, S., Mayer, K.M.: Implementation of a simple clinical linear accelerator beam model in MCNP6 and comparison with measured beam characteristics. Appl. Radiat. Isot. 155, 108925 (2020)

    Google Scholar 

  22. 22.

    de Oliveira, A.E., Guerra, V.G.: Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation. J. Electrostat. 96, 1–9 (2018)

    Google Scholar 

  23. 23.

    Gu, G.Q., Han, C.B., Tian, J.J., Jiang, T., He, C., Lu, C.X., Bai, Y., Nie, J.H., Li, Z., Wang, Z.L.: Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Res. 11(8), 4090–4101 (2018)

    Google Scholar 

  24. 24.

    Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y.S., Hu, Y., Wang, Z.L.: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013)

    Google Scholar 

  25. 25.

    Shang, W., Gu, G.Q., Yang, F., Zhao, L., Cheng, G., Du, Z.-L., Wang, Z.L.: A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching. ACS Nano 11(9), 8796–8803 (2017)

    Google Scholar 

  26. 26.

    Cheng, J., Ding, W., Zi, Y., Lu, Y., Ji, L., Liu, F., Wu, C., Wang, Z.L.: Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9(1), 1–11 (2018)

    Google Scholar 

  27. 27.

    Qin, H., Gu, G., Shang, W., Luo, H., Zhang, W., Cui, P., Zhang, B., Guo, J., Cheng, G., Du, Z.: A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 68, 104372 (2020)

    Google Scholar 

  28. 28.

    Yang, F., Guo, J., Zhao, L., Shang, W., Gao, Y., Zhang, S., Gu, G., Zhang, B., Cui, P., Cheng, G.: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator. Nano Energy 67, 104210 (2020)

    Google Scholar 

  29. 29.

    Zhao, K., Gu, G., Zhang, Y., Zhang, B., Yang, F., Zhao, L., Zheng, M., Cheng, G., Du, Z.: The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 53, 898–905 (2018)

    Google Scholar 

  30. 30.

    Qin, H., Cheng, G., Zi, Y., Gu, G., Zhang, B., Shang, W., Yang, F., Yang, J., Du, Z., Wang, Z.L.: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28(51), 1805216 (2018)

    Google Scholar 

  31. 31.

    Cheng, G., Zheng, H., Yang, F., Zhao, L., Zheng, M., Yang, J., Qin, H., Du, Z., Wang, Z.L.: Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing. Nano Energy 44, 208–216 (2018)

    Google Scholar 

  32. 32.

    Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y.S., Wang, Z.L.: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26(39), 6720–6728 (2014)

    Google Scholar 

  33. 33.

    Roussel-Dupre, R., Gurevich, A., Tunnell, T., Milikh, G.: Kinetic theory of runaway air breakdown. Phys. Rev. E 49(3), 2257 (1994)

    Google Scholar 

  34. 34.

    Liu, D., Yin, X., Guo, H., Zhou, L., Li, X., Zhang, C., Wang, J., Wang, Z.L.: A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019)

    Google Scholar 

  35. 35.

    Zi, Y., Wu, C., Ding, W., Wang, Z.L.: Maximized effective energy output of contact-separationtriggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 27(24), 688–697 (2017)

    Google Scholar 

  36. 36.

    Dai, K., Wang, X., Niu, S., Yi, F., Yin, Y., Chen, L., Zhang, Y., You, Z.: Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Res. 10(1), 157–171 (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong Yi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Xiong, L. The effect of the electric field on the output performance of triboelectric nanogenerators. J Comput Electron (2020). https://doi.org/10.1007/s10825-020-01538-x

Download citation

Keywords

  • Internet of Things
  • Triboelectric nanogenerator
  • Electric field
  • Energy conversion