Doping-induced ferromagnetism in InSe and SnO monolayers


Hole-doping of GaX, InX (X = S or Se) and SnO monolayers is predicted to induce a stable ferromagnetic order in these two-dimensional materials, making them potentially interesting for nanoscaled spintronic devices. Ferromagnetism in these materials arises from their peculiar Mexican-hat valence band edge structure, which leads to a Stoner instability. We discuss here the results from first-principles simulations on the p-type doping-induced ferromagnetism in these 2D materials. Hole-doping, induced by intrinsic and extrinsic point defects, is considered. Metal vacancies are found to produce shallow spin-polarized gap states near the valence band edge, leading to a p-type behavior. Among the investigated potential extrinsic defects (dopants), As substitution of the oxygen atoms in SnO or Bi substitution of the selenium atoms in InSe appears to be good candidates for the hole-doping of these 2D materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Butler, S.Z., Hollen, S.M., Cao, L.Y., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J.X., Ismach, A.F., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013)

    Article  Google Scholar 

  2. 2.

    Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768 (2014)

    Article  Google Scholar 

  3. 3.

    Feng, W., Zheng, W., Cao, W., Hu, P.: Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26, 6587 (2014)

    Article  Google Scholar 

  4. 4.

    Schwierz, F., Pezoldt, J., Granzner, R.: Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261 (2015)

    Article  Google Scholar 

  5. 5.

    Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., Xu, J.B., Zhu, H.: Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)

    Article  Google Scholar 

  6. 6.

    Molle, A., Goldberger, J., Houssa, M., Xu, Y., Zhang, S.C., Akinwande, D.: Buckled two-dimensional xene sheets. Nat. Mater. 16, 163 (2017)

    Article  Google Scholar 

  7. 7.

    Robinson, J.A.: Perspective: 2D for beyond CMOS. APL Mater. 6, 058202 (2018)

    Article  Google Scholar 

  8. 8.

    Bandurin, D.A., et al.: High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223 (2017)

    Article  Google Scholar 

  9. 9.

    Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., Hosono, H.: P-channel thin-film transistor using p-type oxide semiconductor SnO. Appl. Phys. Lett. 93, 032113 (2008)

    Article  Google Scholar 

  10. 10.

    Yabuta, H., Kaji, N., Hayashi, R., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., Hosono, H.: Sputtering formation of p-type SnO thin-film transistors on glass towards oxide complementary circuits. Appl. Phys. Lett. 97, 072111 (2010)

    Article  Google Scholar 

  11. 11.

    Liang, L.Y., Cao, H.T., Chen, X.B., Liu, Z.M., Zhuge, F., Luo, H., Li, J., Lu, Y.C., Lu, W.: Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl. Phys. Lett. 100, 263502 (2012)

    Article  Google Scholar 

  12. 12.

    Saji, K.J., Tian, K., Snure, M., Tiwari, A.: 2D tin monoxide—an unexplored p-type van der Waals semiconductor: materials characteristics and field-effect transistors. Adv. Electron. Mater. 2, 1500453 (2016)

    Article  Google Scholar 

  13. 13.

    Han, W.: Perspectives for spintronics in 2D materials. APL Mater. 4, 032401 (2016)

    Article  Google Scholar 

  14. 14.

    Shabbir, B., Nadeem, M., Dai, Z., Fuhrer, M.S., Xue, Q.K., Wang, X., Bao, Q.: Long-range intrinsic ferromagnetism in two-dimensional materials and dissipationless future technologies. Appl. Phys. Rev. 5, 041105 (2018)

    Article  Google Scholar 

  15. 15.

    Gong, C., Zhang, X.: Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 706 (2019)

    Article  Google Scholar 

  16. 16.

    van Gog, H., Li, W.F., Fang, C., Koster, R.S., Dijkstra, M., van Huis, M.: Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. npj 2D Mater. Appl. 3, 18 (2019)

    Article  Google Scholar 

  17. 17.

    Liu, W., Xu, Y. (eds.): Spintronic 2D Materials. Elsevier, Amsterdam (2020)

    Google Scholar 

  18. 18.

    Gong, C., Li, L., Li, Z., Ji, H., Stern, A., Xia, Y., Cao, T., Bao, W., Wang, C., Qiu, Z.Q., Cava, R.J., Louie, S., Xia, J., Zhang, X.: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265 (2017)

    Article  Google Scholar 

  19. 19.

    Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., Xu, X.: Layered-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270 (2017)

    Article  Google Scholar 

  20. 20.

    O’Hara, D.J., Zhu, T., Trout, A.H., Ahmed, A.S., Luo, Y.K., Lee, C.H., Brenner, M.R., Rajan, S., Gupta, J.A., McComb, D.W., Kawakami, R.: Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125 (2018)

    Article  Google Scholar 

  21. 21.

    M. Bonilla, S. Kolekar, Y. Ma, H. Coy Diaz,V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nature Nanotechnol. 13, 289 (2018).

  22. 22.

    Cao, T., Li, Z., Louie, S.G.: Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 114, 236602 (2015)

    Article  Google Scholar 

  23. 23.

    Seixas, L., Rodin, A.S., Carvalho, A., Castro Neto, A.H.: Multiferroic two-dimensional materials. Phys. Rev. Lett. 116, 206803 (2016)

    Article  Google Scholar 

  24. 24.

    Houssa, M., Iordanidou, K., Pourtois, G., V.V. Afanas’ev, and A. Stesmans, : Ferromagnetism in two-dimensional hole-doped SnO. AIP Adv. 8, 055010 (2018)

  25. 25.

    Iordanidou, K., Houssa, M., Kioseoglou, J., V.V. Afanas’ev, A. Stesmans, and C. Persson, : Hole-doped 2D InSe for spintronic applications. ACS Appl. Nano Mater. 1, 6656 (2018)

  26. 26.

    Iordanidou, K., Houssa, M., Persson, C.: Carrier-mediated ferromagnetism in two-dimensional PtS2. RSC Adv. 10, 952 (2020)

    Article  Google Scholar 

  27. 27.

    Hamer, M.J., et al.: Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano 13, 2136 (2019)

    Google Scholar 

  28. 28.

    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  29. 29.

    Kresse, G., Furthmüller, J.: Efficiency of ab-initio Total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  30. 30.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  31. 31.

    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  32. 32.

    Grimme, S.: Semiempirical GGA-type density functional constructed with long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  33. 33.

    Debbichi, L., Eriksson, O., Lebègue, S.: Two-dimensional indium selenides compounds: an ab-initio study. J. Phys. Chem. Lett. 6, 3098 (2015)

    Article  Google Scholar 

  34. 34.

    Lany, S., Zunger, A.: Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case study for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008)

    Article  Google Scholar 

  35. 35.

    Togo, A., Oba, F., Tanaka, I., Tatsumi, K.: First-principles calculations of native defects in tin monoxide. Phys. Rev. B 74, 195128 (2006)

    Article  Google Scholar 

  36. 36.

    Varley, J.B., Schleifer, A., Janotti, A., Van de Walle, C.G.: Ambipolar doping in SnO. Appl. Phys. Lett. 103, 082118 (2013)

    Article  Google Scholar 

Download references


Part of this work has been financially supported by the KU Leuven Research Funds, project C14/17/080. Part of the computational resources and services used in this work have been provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government – department EWI. Fruitful discussions with Prof. Lino Pereira and Prof. Jean-Pierre Locquet are gratefully acknowledged.

Author information



Corresponding author

Correspondence to M. Houssa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Houssa, M., Meng, R., Iordanidou, K. et al. Doping-induced ferromagnetism in InSe and SnO monolayers. J Comput Electron (2020).

Download citation


  • 2D materials
  • Magnetism
  • Density functional theory
  • Defects