First-principles study of 2,6-dimethyl-3,5-heptanedione: a β-diketone molecular switch induced by hydrogen transfer

Abstract

In this research, using nonequilibrium green’s function integrated with density functional theory, we investigate the electronic transport properties of a β-diketone (2,6-dimethyl-3,5-heptanedione) molecular wire induced by hydrogen transfer. The title molecule can be converted between two enol and keto forms. The electronic transmission factors, spatial spreading of molecular projected self-consistent Hamiltonian orbitals, onoff ratio, IV characteristics, three different adsorption types (hollow, top, and bridge), the alteration of the electrode materials, Y, (Y = Au, Ag, and Pt), and HOMO–LUMO gaps relevant to these forms are thoroughly discussed. It can be concluded that due to the deformation of the title molecule (enol → keto), there is a noticeable change in conductivity. As a result of this deformation, the conductivity is switched from on state (high conductivity and low resistance) to off state (low conductivity and high resistance).

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Basch, H., Cohen, R., Ratner, M.A.: Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett. 5, 1668–1675 (2005)

    Article  Google Scholar 

  2. 2.

    Frederiksen, T., Brandbyge, M., Lorente, N., Jauho, A.-P.: Inelastic scattering and local heating in atomic gold wires. Phys. Rev. Lett. 93, 256601–256604 (2004)

    Article  Google Scholar 

  3. 3.

    Xiang, D., Wang, X., Jia, C., Lee, T., Guo, X.: Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016)

    Article  Google Scholar 

  4. 4.

    Leary, E., La Rosa, A., González, M.T., Rubio-Bollinger, G., Agraït, N., Martín, N.: Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chem. Soc. Rev. 44, 920–942 (2015)

    Article  Google Scholar 

  5. 5.

    Feldman, A.K., Steigerwald, M.L., Guo, X., Nuckolls, C.: Molecular electronic devices based on single-walled carbon nanotube electrodes. Acc. Chem. Res. 41, 1731–1741 (2008)

    Article  Google Scholar 

  6. 6.

    Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  Google Scholar 

  7. 7.

    Li, Z.-L., Sun, F., Bi, J.-J., Liu, R., Suo, Y.-Q., Fu, H.-Y., Zhang, G.-P., Song, Y.-Z., Wang, D., Wang, C.-K.: Nanostructures: doping-induced negative differential conductance enhancement in single-molecule junction. Physica E 106, 270–276 (2019)

    Article  Google Scholar 

  8. 8.

    Qiu, S., Miao, Y.-Y., Zhang, G.-P., Ren, J.-F., Wang, C.-K., Hu, G.-C.: Enhancement of magnetoresistance and current spin polarization in single-molecule junctions by manipulating the hybrid interface states via anchoring groups. J. Magn. Magn. Mater. 479, 247–253 (2019)

    Article  Google Scholar 

  9. 9.

    Sangtarash, S., Vezzoli, A., Sadeghi, H., Ferri, N., O’Brien, H.M., Grace, I., Bouffier, L., Higgins, S.J., Nichols, R.J., Lambert, C.J.: Gateway state-mediated, long-range tunnelling in molecular wires. Nanoscale 10, 3060–3067 (2018)

    Article  Google Scholar 

  10. 10.

    Liao, K.-C., Bowers, C.M., Yoon, H.J., Whitesides, G.M.: Fluorination, and tunneling across molecular junctions. J. Am. Chem. Soc. 137, 3852–3858 (2015)

    Article  Google Scholar 

  11. 11.

    Wang, Z.-Q., Wei, M.-Z., Dong, M.-M., Hu, G.-C., Li, Z.-L., Wang, C.-K., Zhang, G.-P.: High-performance single-molecule switch designed by changing parity of electronic wave functions via intramolecular proton transfer. J. Phys. Chem. C 122, 17650–17659 (2018)

    Article  Google Scholar 

  12. 12.

    Zhang, G.-P., Mu, Y.-Q., Zhao, J.-M., Huang, H., Hu, G.-C., Li, Z.-L., Wang, C.-K.: Optimizing the conductance switching performance in photoswitchable dimethyldihydropyrene/cyclophanediene single-molecule junctions. Physica E 109, 1–5 (2019)

    Article  Google Scholar 

  13. 13.

    Mu, Y.-Q., Zhao, J.-M., Chen, L.-Y., Huang, H., Wang, M.-L., Hu, G.-C., Wang, C.-K., Zhang, G.-P.: Odd-even effect of the switching performance for dimethyldihydropyrene/cyclophanediene single-molecule switch modulated by carbon atomic chains. Org. Electron. 81, 105665 (2020)

    Article  Google Scholar 

  14. 14.

    Li, Z., Fu, X., Zhang, G., Wang, C.: Effect of gate electric field on single organic molecular devices. Chin. J. Chem. Phys. 26, 185–190 (2013)

    Article  Google Scholar 

  15. 15.

    Qin, H., Sun, J., Liang, S., Li, X., Yang, X., He, Z., Yu, C., Feng, Z.: Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor. Carbon 116, 760–765 (2017)

    Article  Google Scholar 

  16. 16.

    He, D., Zhang, Y., Wu, Q., Xu, R., Nan, H., Liu, J., Yao, J., Wang, Z., Yuan, S., Li, Y.: Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 5, 5162–5169 (2014)

    Article  Google Scholar 

  17. 17.

    Sarmah, S., Kumar, A.: Optical properties of SnO2 nanoparticles. Indian J. Phys. 84, 1211–1221 (2010)

    Article  Google Scholar 

  18. 18.

    Devi, S., Srivastva, M.: Solgel synthesis and structural characterization of silver-silica nanocomposites. Indian J. Phys. 84, 1561–1566 (2010)

    Article  Google Scholar 

  19. 19.

    Shi, X., Zheng, X., Dai, Z., Wang, Y., Zeng, Z.: Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance. J. Phys. Chem. B. 109, 3334–3339 (2005)

    Article  Google Scholar 

  20. 20.

    Anbarasan, P., Kumar, P.S., Vasudevan, K., Govindan, R., Aroulmoji, V.: Geometries, electronic structures and vibrational spectral studies of 4-aminophthalonitrile using quantum chemical calculations for dye sensitized solar cells. Indian J. Phys. 85, 1477–1494 (2011)

    Article  Google Scholar 

  21. 21.

    Sarmah, S., Kumar, A.: Photocatalytic activity of polyaniline-TiO2 nanocomposites. Indian J. Phys. 85, 713 (2011)

    Article  Google Scholar 

  22. 22.

    Kanaani, A., Ajloo, D., Kiyani, H., Amri, S.A.N.: First-principles study of the electronic transport properties of a 1,3-diazabicyclo [3.1. 0] hex-3-ene molecular optical switch. Optik 153, 135–143 (2018)

    Article  Google Scholar 

  23. 23.

    Vakili, M., Sobhkhizi, A., Darugar, V., Kanaani, A., Ajloo, D.: A first-principles study of aryloxyanthraquinone-based optical molecular switch. Chem. Phys. Lett. 686, 140–147 (2017)

    Article  Google Scholar 

  24. 24.

    Kanaani, A., Ajloo, D., Kiyani, H., Shaheri, F., Amiri, M.: Synthesis, molecular structure, spectroscopic investigations and computational study of a potential molecular switch of 2-([1, 1′-biphenyl]-4-yl)-2-methyl-6-(4-nitrophenyl)-4-phenyl-1, 3 diazabicyclo [3.1. 0] hex-3-ene. J. Chem. Sci. 128, 1211–1221 (2016)

    Article  Google Scholar 

  25. 25.

    Fahid, F., Kanaani, A., Pourmousavi, S.A., Ajloo, D.: Synthesis, tautomeric stability, spectroscopy and computational study of a potential molecular switch of (Z)-4-(phenylamino) pent-3-en-2-one. Mol. Phys. 115, 795–808 (2017)

    Article  Google Scholar 

  26. 26.

    Kanaani, A., Ajloo, D., Kiyani, H., Ghasemian, H., Vakili, M., Feizabadi, M.: Molecular structure, spectroscopic investigations and computational study on the potential molecular switch of (E)-1-(4-(2-hydroxybenzylideneamino) phenyl) ethanone. Mol. Phys. 114, 2081–2097 (2016)

    Article  Google Scholar 

  27. 27.

    Kanaani, A., Vakili, M., Ajloo, D., Nekoei, M.: Current–voltage characteristics of the aziridine-based nano-molecular wires: a light-driven molecular switch. Chin. Phys. Lett. 35, 48501 (2018)

    Article  Google Scholar 

  28. 28.

    Bai, P., Li, E., Lam, K., Kurniawan, O., Koh, W.: Carbon nanotube Schottky diode: an atomic perspective. Nanotechnology 19, 115203 (2008)

    Article  Google Scholar 

  29. 29.

    Bhadra, J., Sarkar, D.: Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite. Indian J. Phys. 84, 693–697 (2010)

    Article  Google Scholar 

  30. 30.

    Bhadra, J., Sarkar, D.: Polypyrrole nanocomposite made by polypyrrole dispersion in poly(vinyl alcohol) matrix. Indian J. Phys. 84, 1321–1325 (2010)

    Article  Google Scholar 

  31. 31.

    Tsuji, Y., Staykov, A., Yoshizawa, K.: Orbital control of the conductance photoswitching in diarylethene. J. Phys. Chem. C 113, 21477–21483 (2009)

    Article  Google Scholar 

  32. 32.

    Wang, Z., Gu, T., Tada, T., Watanabe, S.: Excess-silver-induced bridge formation in a silver sulfide atomic switch. Appl. Phys. Lett. 93, 152106 (2008)

    Article  Google Scholar 

  33. 33.

    Mandal, G., Ganguly, T.: Applications of nanomaterials in the different fields of photosciences. Indian J. Phys. 85, 1229–1245 (2011)

    Article  Google Scholar 

  34. 34.

    Lam, K.-T., Lee, C., Liang, G.: Bilayer graphene nanoribbon nanoelectromechanical system device: a computational study. Appl. Phys. Lett. 95, 143107–143110 (2009)

    Article  Google Scholar 

  35. 35.

    Fan, Z., Wang, D., Chang, P.-C., Tseng, W.-Y., Lu, J.G.: ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004)

    Article  Google Scholar 

  36. 36.

    Mitra, S., Mandal, A., Banerjee, S., Datta, A., Bhattacharya, S., Bose, A., Chakravorty, D.: Template based growth of nanoscaled films: a brief review. Indian J. Phys. 85, 649–666 (2011)

    Article  Google Scholar 

  37. 37.

    Tekerek, S., Kudret, A., Alver, Ü.: Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice. Indian J. Phys. 85, 1469–1476 (2011)

    Article  Google Scholar 

  38. 38.

    Chandiramouli, R., Sriram, S.: First-principles investigation on transport properties of NiO monowire-based molecular device. Mol. Phys. 112, 1954–1962 (2014)

    Article  Google Scholar 

  39. 39.

    Fiori, G.: Negative differential resistance in mono and bilayer graphene pn junctions. IEEE Electron Device Lett. 32, 1334–1336 (2011)

    Article  Google Scholar 

  40. 40.

    Khosravi, E., Stefanucci, G., Kurth, S., Gross, E.K.U.: Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys. Chem. Chem. Phys. 11, 4535–4538 (2009)

    Article  Google Scholar 

  41. 41.

    Zhang, Z., Yang, Z., Yuan, J., Zhang, H., Ding, X., Qiu, M.: First-principles investigation on electronics characteristics of benzene derivatives with different side groups. J. Chem. Phts. 129, 094702 (2008)

    Article  Google Scholar 

  42. 42.

    Roth, K.M., Yasseri, A.A., Liu, Z., Dabke, R.B., Malinovskii, V., Schweikart, K.-H., Yu, L., Tiznado, H., Zaera, F., Lindsey, J.S., Kuhr, W.G.: Measurements of electron-transfer rates of charge-storage molecular monolayers on Si (100). Toward hybrid molecular/semiconductor information storage devices. J. Am. Chem. Soc. 125, 505–517 (2003)

    Article  Google Scholar 

  43. 43.

    Zhao, P., Fang, C., Xia, C., Liu, D., Xie, S.: 15,16-Dinitrile DDP/CPD as a possible solid-state optical molecular switch. Chem. Phys. Lett. 453, 62–67 (2008)

    Article  Google Scholar 

  44. 44.

    Choi, B.-Y., Kahng, S.-J., Kim, S., Kim, H., Kim, H.W., Song, Y.J., Ihm, J., Kuk, Y.: Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106–156110 (2006)

    Article  Google Scholar 

  45. 45.

    Baratz, A., Baer, R.: Nonmechanical conductance switching in a molecular tunnel junction. J. Phys. Chem. Lett. 3, 498–502 (2012)

    Article  Google Scholar 

  46. 46.

    Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’Brien, S., Yan, J.: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006)

    Article  Google Scholar 

  47. 47.

    Fan, Z.-Q., Chen, K.-Q.: Stable two-dimensional conductance switch of polyaniline molecule connecting to graphene nanoribbons. Sci. Rep. 4, 5976 (2014)

    Article  Google Scholar 

  48. 48.

    Jiang, Y., Tan, P., Cheng, L., Shan, S.-F., Liu, X.-Q., Sun, L.-B.: Selective adsorption and efficient regeneration via smart adsorbents possessing thermo-controlled molecular switches. Phys. Chem. Chem. Phys. 18, 9883–9887 (2016)

    Article  Google Scholar 

  49. 49.

    Jia, C., Migliore, A., Xin, N., Huang, S., Wang, J., Yang, Q., Wang, S., Chen, H., Wang, D., Feng, B., Liu, Z.: Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016)

    Article  Google Scholar 

  50. 50.

    Roke, D., Stuckhardt, C., Danowski, W., Wezenberg, S.J., Feringa, B.L.: Light-gated rotation in a molecular motor functionalized with a dithienylethene switch. Angew. Chem. 130, 10675–10679 (2018)

    Article  Google Scholar 

  51. 51.

    Bleger, D., Hecht, S.: Visible-light-activated molecular switches. Angew. Chem. 54, 11338–11349 (2015)

    Article  Google Scholar 

  52. 52.

    Xia, C.J., Zhang, D.H., Chen, A.M., Zhang, Y.T.: Effect of carbon nanotubes chirality on the E-C photo-isomerization switching behavior in moelcular device. Optik 125, 4522–4525 (2014)

    Article  Google Scholar 

  53. 53.

    Collier, C., Wong, E., Belohradský, M., Raymo, F., Stoddart, J., Kuekes, P., Williams, R., Heath, J.: Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  Google Scholar 

  54. 54.

    Jiang, F., Zhou, Y., Chen, H., Note, R., Mizuseki, H., Kawazoe, Y.: First-principles study of phenyl ethylene oligomers as current-switch. Phys. Lett. A 359, 487–493 (2006)

    Article  Google Scholar 

  55. 55.

    Liao, J., Agustsson, J.S., Wu, S., Schönenberger, C., Calame, M., Leroux, Y., Mayor, M., Jeannin, O., Ran, Y.-F., Liu, S.-X.: Cyclic conductance switching in networks of redox-active molecular junctions. Nano Lett. 10, 759–764 (2010)

    Article  Google Scholar 

  56. 56.

    Zhang, C., He, Y., Cheng, H.-P., Xue, Y., Ratner, M.A., Zhang, X.-G., Krstic, P.: Current–voltage characteristics through a single light-sensitive molecule. Phys. Rev. B 73, 125445–125450 (2006)

    Article  Google Scholar 

  57. 57.

    Chen, F., He, J., Nuckolls, C., Roberts, T., Klare, J.E., Lindsay, S.: A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005)

    Article  Google Scholar 

  58. 58.

    Tayyari, S.F., Zahedi-Tabrizi, M., Laleh, S., Moosavi-Tekyeh, Z., Rahemi, H., Wang, Y.A.: Structure and vibrational assignment of 3,4-diacetyl-2,5-hexanedione. A density functional theoretical study. J. Mol. Struct. 827, 176–187 (2007)

    Article  Google Scholar 

  59. 59.

    Tayyari, S.F., Zahedi-Tabrizi, M., Afzali, R., Laleh, S., Mirshahi, H.-A., Wang, Y.A.: Structure and vibrational assignment of the enol form of 3-chloro-pentane-2, 4-dione. J. Mol. Struct. 873, 79–88 (2008)

    Article  Google Scholar 

  60. 60.

    Gilli, G., Bellucci, F., Ferretti, V., Bertolasi, V.: Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the. beta.-diketone fragment. J. Am. Chem. Soc. 111, 1023–1028 (1989)

    Article  Google Scholar 

  61. 61.

    Sanz, P., Mo, O., Yanez, M., Elguero, J.: Resonance-assisted hydrogen bonds: a critical examination. Structure and stability of the enols of β-diketones and β-enaminones. J. Phys. Chem. A 111, 3585–3591 (2007)

    Article  Google Scholar 

  62. 62.

    Rappoport, Z.: Chemistry of Enols. Wiley, Hoboken (1990)

    Google Scholar 

  63. 63.

    Tayyari, S.F., Najafi, A., Lorestani, F., Sammelson, R.E.: Hydrogen bond strength and vibrational assignment of the enol form of 3-(methylthio) pentane-2, 4-dione. J. Mol. Struct. Theochem. 854, 54–62 (2008)

    Article  Google Scholar 

  64. 64.

    Vakili, M., Nekoei, A.-R., Tayyari, S.F., Kanaani, A., Sanati, N.: Conformation, molecular structure, and intramolecular hydrogen bonding of 1, 1, 1-trifluoro-5, 5-dimethyl-2, 4-hexanedione. J. Mol. Struct. 1021, 102–111 (2012)

    Article  Google Scholar 

  65. 65.

    Vakili, M., Tayyari, S., Kanaani, A., Nekoei, A.-R., Salemi, S., Miremad, H., Berenji, A., Sammelson, R.: Conformational stability, molecular structure, intramolecular hydrogen bonding, and vibrational spectra of 5, 5-dimethylhexane-2, 4-dione. J. Mol. Struct. 998, 99–109 (2011)

    Article  Google Scholar 

  66. 66.

    Vakili, M., Tayyari, S.F., Nekoei, A.-R., Miremad, H., Salemi, S., Sammelson, R.: Structure, intramolecular hydrogen bonding, and vibrational spectra of 2, 2, 6, 6-tetramethyl-3, 5-heptanedione. J. Mol. Struct. 970, 160–170 (2010)

    Article  Google Scholar 

  67. 67.

    Zahedi-Tabrizi, M., Tayyari, S.F., Badalkhani-Khamseh, F., Ghomi, R., Afshar-Qahremani, F.: Molecular structure and intramolecular hydrogen bonding in 2-hydroxybenzophenones: a theoretical study. J. Chem. Sci. 126, 919–929 (2014)

    Article  Google Scholar 

  68. 68.

    Darugar, V., Vakili, M., Nekoei, A., Tayyari, S.F., Afzali, R.: Tautomerism, molecular structure, intramolecular hydrogen bond, and enol-enol equilibrium of para halo substituted 4, 4, 4-trifluoro-1-phenyl-1, 3-butanedione; Experimental and theoretical studies. J. Mol. Struct. 1150, 427–437 (2017)

    Article  Google Scholar 

  69. 69.

    Gaussian09, R. A.: 1, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson et al. Gaussian. Inc, Wallingford CT (2009)

    Google Scholar 

  70. 70.

    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  71. 71.

    Cao, Y., Ge, Q., Dyer, D.J., Wang, L.: Steric effects on the adsorption of alkylthiolate self-assembled monolayers on Au (111). J. Phys. Chem. B 107, 3803–3807 (2003)

    Article  Google Scholar 

  72. 72.

    Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E.: Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc. 115, 9389–9401 (1993)

    Article  Google Scholar 

  73. 73.

    Geng, W., Nara, J., Ohno, T.: Adsorption of benzene thiolate on the (111) surface of M (M = Pt, Ag, Cu) and the conductance of M/benzene dithiolate/M molecular junctions: a first-principles study. Thin Solid Films 464, 379–383 (2004)

    Article  Google Scholar 

  74. 74.

    Kondo, H., Nara, J., Kino, H., Ohno, T.: Transport properties of a biphenyl-based molecular junction system—the electrode metal dependence. J. Phys. Condens. Matter 21, 064220–064225 (2009)

    Article  Google Scholar 

  75. 75.

    Gottschalck, J., Hammer, B.: A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au (111). J. Chem. Phys. 116, 784–790 (2002)

    Article  Google Scholar 

  76. 76.

    Kondoh, H., Iwasaki, M., Shimada, T., Amemiya, K., Yokoyama, T., Ohta, T., Shimomura, M., Kono, S.: Adsorption of thiolates to singly coordinated sites on Au (111) evidenced by photoelectron diffraction. Phys. Rev. Lett. 90, 066102–066104 (2003)

    Article  Google Scholar 

  77. 77.

    Rodriguez, J.A., Hrbek, J., Kuhn, M., Jirsak, T., Chaturvedi, S., Maiti, A.: Interaction of sulfur with Pt (111) and Sn/Pt (111): effects of coverage and metal–metal bonding on reactivity toward sulfur. J. Chem. Phys. 113, 11284–11292 (2000)

    Article  Google Scholar 

  78. 78.

    Ma, S., Jiao, Z., Yang, Z.X.: Coverage effects on the adsorption of sulfur on Co (0 0 0 1): a DFT study. Surf. Sci. 604, 817–823 (2010)

    Article  Google Scholar 

  79. 79.

    Martorell, B., Clotet, A., Fraxedas, J.: A first principle study of the structural, vibrational and electronic properties of tetrathiafulvalene adsorbed on Ag (110) and Au (110) surfaces. J. Comput. Chem. 31, 1842–1852 (2010)

    Google Scholar 

  80. 80.

    Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401–165418 (2002)

    Article  Google Scholar 

  81. 81.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  82. 82.

    Ganji, M., Mir-Hashemi, A.: Ab initio investigation of the IV characteristics of the butadiene nano-molecular wires: a light-driven molecular switch. Phys. Lett. A 372, 3058–3063 (2008)

    MATH  Article  Google Scholar 

  83. 83.

    Seyedkatouli, S., Vakili, M.: Current–voltage characteristics of β-ketoenamines molecular switches induced by intramolecular hydrogen transfer. Indian J. Phys. 93, 1527–1535 (2019)

    Article  Google Scholar 

  84. 84.

    Staykov, A., Nozaki, D., Yoshizawa, K.: Photoswitching of conductivity through a diarylperfluorocyclopentene nanowire. J. Phys. Chem. C 111, 3517–3521 (2007)

    Article  Google Scholar 

  85. 85.

    Marsella, M.J., Wang, Z.-Q., Mitchell, R.H.: Backbone photochromic polymers containing the dimethyldihydropyrene moiety: toward optoelectronic switches. Org. Lett. 2, 2979–2982 (2000)

    Article  Google Scholar 

  86. 86.

    Staykov, A., Nozaki, D., Yoshizawa, K.: Theoretical study of donor-π-bridge-acceptor unimolecular electric rectifier. J. Phys. Chem. C 111, 11699–11705 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Ferdowsi University of Mashhad for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Vakili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sayyar, Z., Vakili, M., Kanaani, A. et al. First-principles study of 2,6-dimethyl-3,5-heptanedione: a β-diketone molecular switch induced by hydrogen transfer. J Comput Electron (2020). https://doi.org/10.1007/s10825-020-01525-2

Download citation

Keywords

  • Electronic transport
  • DFT–NEGF
  • β-Diketone
  • Hydrogen transfer