A configurable two-layer four-bias graphene-based THz absorber


A novel structure for a THz absorber covering the THz band (0.1–10 THz) is presented. Exploiting nanographene disks and ribbons beside the dual-bias method, three modes of operation are introduced with the graphene gate biasing as the control parameter. The structure includes two layers consisting of graphene patterns on TOPAS dielectric and a thick gold plate at the bottom. The superior performance of the structure mainly relies on the use of feasible geometric patterns and the characteristics of graphene, while an evolutionary genetic algorithm is used to optimize a cost function defined based on four chemical potential values. In comparison with conventional structures, the device proposed herein offers an increased number of gate biases and thereby more degrees of freedom to achieve greater tunability. To model the proposed device, a recently developed circuit model approach is modified to include the dual-bias scheme introduced herein, enabling a very simple calculation of the referred input impedance of the device that lies at the heart of the design procedure. The input impedance required for impedance matching theory is matched with the free space incident medium (120π Ω) to maximize the absorption. Finally, the results from the MATLAB algorithm are verified against finite element method simulations using the CST simulator, confirming the validity and accuracy of the proposed design. According to both the circuit model representation and the full-wave numerical modeling, the presented device absorbs THz waves with an absorption ratio of more than 90% in three operational modes, viz. mode A (0.7–2.2 THz), mode B (5.3–6.6 THz), and mode C (7.4–8.4 THz). This increases its potential for use in numerous applications in the THz band such as sensors, detectors, modulators, and even optical processors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28


  1. 1.

    Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)

    Article  Google Scholar 

  2. 2.

    Parizi, S.B., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 1–7 (2015)

    Article  Google Scholar 

  3. 3.

    Xiong, H., et al.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3), 857–862 (2018)

    Article  Google Scholar 

  4. 4.

    Aghaee, T., Orouji, A.A.: Circuit modeling of ultra‐broadband terahertz absorber based on graphene array periodic disks. Int. J. Numer. Model. Electron. Netw. Devices Fields. (2019). https://doi.org/10.1002/jnm.2586

    Article  Google Scholar 

  5. 5.

    Biabanifard, M., Mohammad, S.A.: Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)

    Article  Google Scholar 

  6. 6.

    Biabanifard, S., et al.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 427, 418–425 (2018)

    Article  Google Scholar 

  7. 7.

    Sadegh, B.: Ultra-broadband terahertz absorber based on graphene ribbons. Optik 172, 1026–1033 (2018)

    Article  Google Scholar 

  8. 8.

    Biabanifard, M., et al.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)

    Article  Google Scholar 

  9. 9.

    Biabanifard, M., Mohammad, S.A.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)

    Article  Google Scholar 

  10. 10.

    Tabatabaei, F., Mohammad, B., Mohammad, S.A.: Terahertz polarization-insensitive and all-optical tunable filter using the Kerr effect in graphene disks arrays. Optik 180, 526–535 (2019)

    Article  Google Scholar 

  11. 11.

    Arsanjani, A., Mohammad, B., Mohammad, S.A.: A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber. Superlattices Microstruct. 128, 157–169 (2019)

    Article  Google Scholar 

  12. 12.

    Biabanifard, M., Mohammad, S.A.: Ultra-wideband terahertz graphene absorber using a circuit model. Appl. Phys. A 124(12), 826 (2018)

    Article  Google Scholar 

  13. 13.

    Najafi, A., et al.: Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)

    Article  Google Scholar 

  14. 14.

    Jozani, K.J., et al.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)

    Article  Google Scholar 

  15. 15.

    Islam, M.S., et al.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2019)

    Article  Google Scholar 

  16. 16.

    Zanjani, M.S., et al.: A reconfigurable multi-band, multi-bias THz absorber. Optik 191, 22–32 (2019)

    Article  Google Scholar 

  17. 17.

    Biabanifard, M., et al.: Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng. Technol. 2, 555585-001 (2018)

    Google Scholar 

  18. 18.

    Han, M.Y., Kim, P.: Graphene nanoribbon devices at high bias. Nano Converg. 1(1), 1 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Yang, Ming, Hou, Ying, Kotov, Nicholas A.: Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 7(5), 430–447 (2012)

    Article  Google Scholar 

  20. 20.

    Sang, T., et al.: Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Opt. Commun. 413, 255–260 (2018)

    Article  Google Scholar 

  21. 21.

    Fardoost, A., Fatemeh, G.V., Reza, S.: Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans. Nanotechnol. 16(1), 68–74 (2017)

    Google Scholar 

  22. 22.

    Guo, J., Leiming, W., Dai, X., Xiang, Y., Fan, D.: Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv. 7(2), 025101 (2017)

    Article  Google Scholar 

  23. 23.

    Wang, X., Jiang, X., You, Q., Guo, J., Dai, X., Xiang, Y.: Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Res. 5(6), 536–542 (2017)

    Article  Google Scholar 

  24. 24.

    Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014)

    Article  Google Scholar 

  25. 25.

    Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, Li, Ma, Y.: Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105(2), 021102 (2014)

    Article  Google Scholar 

  26. 26.

    Runmei, G., Xu, Z., Ding, C., Wu, L., Yao, J.: Graphene metamaterial for multiband and broadband terahertz absorber. Opt. Commun. 356, 400–404 (2015)

    Article  Google Scholar 

  27. 27.

    Guo, Y., Yan, L., Pan, W., Luo, B., Luo, X.: Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9(4), 951–957 (2014)

    Article  Google Scholar 

  28. 28.

    Huang, M., Cheng, Y., Cheng, Z., Chen, H., Mao, X., Gong, R.: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt. Commun. 415, 194–201 (2018)

    Article  Google Scholar 

  29. 29.

    Nasari, H., Mohammad, S.A.: Terahertz bistability and multistability in graphene/dielectric Fibonacci multilayer. Appl. Opt. 56(19), 5313–5322 (2017)

    Article  Google Scholar 

  30. 30.

    Xiang, Y., Jun, G., Xiaoyu, D., Shuangchun, W., Dingyuan, T.: Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt. Exp. 22(3), 3054–3062 (2014)

    Article  Google Scholar 

  31. 31.

    Wu, J., Wang, H., Jiang, L., Guo, J., Dai, X., Xiang, Y., Wen, S.: Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range. J. Appl. Phys. 119(20), 203107 (2016)

    Article  Google Scholar 

  32. 32.

    Meng, T., Hu, D., Zhu, Q.: Design of a five-band terahertz perfect metamaterial absorber using two resonators. Opt. Commun. 415, 151–155 (2018)

    Article  Google Scholar 

  33. 33.

    Dong, Y., Liu, P., Dingwang, Y., Li, G., Yang, L.: A tunable ultrabroadband ultrathin terahertz absorber using graphene stacks. IEEE Antennas Wirel. Propag. Lett. 16, 1115–1118 (2017)

    Article  Google Scholar 

  34. 34.

    Pan, W., Xuan, Y., Zhang, J., Zeng, W.: A broadband terahertz metamaterial absorber based on two circular split rings. IEEE J. Quantum Electron. 53(1), 1–6 (2017)

    Article  Google Scholar 

  35. 35.

    Ye, L., Chen, Y., Cai, G., Liu, N., Zhu, J., Song, Z., Liu, Q.H.: Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Exp. 25, 11223–11232 (2017)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sadegh Biabanifard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Najafi, A., Chaharmahali, I. et al. A configurable two-layer four-bias graphene-based THz absorber. J Comput Electron 19, 719–735 (2020). https://doi.org/10.1007/s10825-020-01462-0

Download citation


  • Reconfigurable absorber
  • Graphene nanoribbons
  • Graphene nanodisks
  • THz
  • Multilayer graphene