Skip to main content
Log in

Computational and experimental analysis of a low-profile, isolation-enhanced, band-notch UWB-MIMO antenna

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents a low-profile, isolation-enhanced, multiple-input multiple-output (MIMO) antenna with a band-notch feature. The MIMO structure comprises two fractal-shaped slotted radiating elements along with a defected ground structure. Arlon AR600 is used as the substrate material. The frequency notch is obtained by etching a split-ring rectangular resonating structure into the surface of the radiating elements. An impedance bandwidth of 3.0–11.1 GHz is obtained along with a band-notch feature centered at exactly 3.5 GHz. The analysis of the frequency- and time-domain response of the proposed structure gives satisfactory results, and good agreement is observed between the simulated and measured data. The simple design and compactness along with the incorporated band-notch feature justify the applicability of the presented antenna in the ultra-wideband communication domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Federal Communication Commission (FCC): Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. First report and order, ET Docket 98-153, FCC 02-48, adopted: Feb. 2002, released in April 2002 (2002)

  2. Foschini, G., Gans, M.: On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6, 311–335 (1998)

    Article  Google Scholar 

  3. Liu, L., Zhao, H., See, T., Chen, Z.: A printed ultra-wideband diversity antenna. In: Proceedings of IEEE International Conference on Ultra Wideband Communication, pp. 2351–2356 (2006)

  4. Wong, K., Su, S., Kuo, Y.: A printed ultra-wideband diversity monopole antenna. Microw. Opt. Technol. Lett. 38, 257–259 (2003)

    Article  Google Scholar 

  5. See, T., Swee, A., Chen, Z.: Correlation analysis of UWB MIMO antenna system configurations. In: Proceedings of IEEE International Conference on Ultra Wideband, pp. 105–108 (2008)

  6. Hong, S., Lee, J., Choi, J.: Design of UWB diversity antenna for PDA applications. In: Proceedings of 11th International Conference on Advanced Communication Technology, pp. 583–585 (2008)

  7. Chen, Y., Lu, W., Cheng, G., Cao, W., Li, Y.: Printed diversity antenna with cross shape stub for ultra-wideband applications. In: Proceedings of 11th IEEE International Conference on Communication Systems, pp. 813–816 (2008)

  8. Bhattacharya, A.: An analytical approach to study the behavior of defected patch structures. In: Sengupta, S., Das, K., Khan, G. (eds.) Emerging Trends in Computing and Communication, Lecture Notes in Electrical Engineering, vol. 298, pp. 431–433. Springer, New Delhi (2014)

    Chapter  Google Scholar 

  9. Roy, B., Bhattacharya, A., Chowdhury, S.K., Bhattacharjee, A.K.: Wideband snowflake slot antenna using Koch iteration technique for wireless and C-band applications. AEU Int. J. Electron. Commun. 70, 1467–1472 (2016)

    Article  Google Scholar 

  10. Caloz, C., Okabe, H., Iwai, T., Itoh, T.: A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microw. Wirel. Compon. Lett. 14, 133–135 (2004)

    Article  Google Scholar 

  11. Rajkumar, S., Selvan, K., Rao, P.H.: Compact 2-port fractal monopole MIMO antenna with polarization diversity and high isolation. In: IEEE Applied Electromagnetics Conference (AEMC), Guwahati. pp. 1–2 (2015)

  12. Peristerianos, A., Theopoulos, A., Koutinos, A., Kaifas, T., Siakavara, K.: Dual-band fractal semi-printed element antenna arrays for MIMO applications. IEEE Antennas Wirel. Propag. Lett. 15, 730–733 (2016)

    Article  Google Scholar 

  13. Rajkumar, S., Selvan, K., Rao, P.: Compact two-element UWB fractal monopole MIMO antenna using T-shaped reflecting stub for high isolation. In: IEEE MTT-S International Microwave and RF Conference (IMaRC), Hyderabad, pp. 348–351 (2015)

  14. Wang, H., Shen, D., Guo, T., Zhang, X.,: A high isolation MIMO antenna used a fractal EBG structure. In: Proceedings of the International Symposium on Antennas and Propagation (ISAP), Nanjing, pp. 241–244 (2013)

  15. Ahsan, Md, Islam, M., Ullah, M.: Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. J. Comput. Electron. 14, 634–641 (2015)

    Article  Google Scholar 

  16. Gianvittorio, J.P., Rahmat-Samii, Y.: Fractal geometry in antenna system design: miniaturized-multiband element, phased array and frequency selective surface design. In: International Conference on Microwave and Millimeter Wave Technology, pp. 508–511 (2002)

  17. Kadir, M.F.A., Jaafar, A.S., Aziz, M.Z.A.A.: Sierpinski carpet fractal antenna. In: Asia-Pacific Conference on Applied Electromagnetics, Melaka, pp. 1–4 (2007)

  18. Bhattacharya, A., Roy, B., Chowdhury, S.K., Bhattacharjee, A.K.: Design and analysis of a Koch snowflake fractal monopole antenna for wideband communication. Appl. Comput. Electromag. Soc. J. 32, 548–554 (2017)

    Google Scholar 

  19. Manimegalai, B., Raju, S., Abhaikumar, V.: A multifractal Cantor antenna for multiband wireless applications. IEEE Antennas Wirel. Propag. Lett. 8, 359–362 (2009)

    Article  Google Scholar 

  20. Kaur, N., Sivia, J.S., Kaur, M.: Design of modified Sierpinski gasket fractal antenna for C and X-band applications. In: IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE), Amritsar, pp. 248–250 (2015)

  21. Vinoy, K.J., Abraham, J.K., Varadan, V.K.,: Fractal dimension and frequency response of fractal shaped antennas. In: IEEE Antennas and Propagation Society International Symposium. 2003 Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Science Meeting (Cat. No. 03CH37450), Columbus, OH, vol. 4, pp. 222–225 (2003)

  22. Ismahayati, A., Soh, P.J., Hadibah, R., Vandenbosch, G.A.E.: Design and analysis of a multiband Koch fractal monopole antenna. In: IEEE International RF and Microwave Conference, Seremban, Negeri Sembilan, pp. 58–62 (2011)

  23. Werner, D.H., Werner, P.L.: Genetically engineered dual-band fractal antennas. In: IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229), Boston, MA, vol. 3, pp. 628–631 (2001)

  24. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Werner, D., Ganguly, S.: An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 45, 38–57 (2003)

    Article  Google Scholar 

  26. Vinoy, K.: Fractal shaped antenna elements for wideband and multiband wireless applications. Ph.D. dissertation, The Pennsylvania State University (2002)

  27. Zhu, Z.W., Zhou, Z.L., Jia, B.G.: On the lower bound of the Hausdorff measure of the Koch curve. Acta Math. Sin. 19, 715–728 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Najam, A., Duroc, Y., Tedjini, S.: Multiple-input multiple-output antennas for ultra wideband communications. IntechOpen 10, 209–236 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help received from Dr. Pranab Paul of Microline India, Kolkata, for providing the facilities for antenna fabrication and measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankan Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Roy, B., Chowdhury, S.K. et al. Computational and experimental analysis of a low-profile, isolation-enhanced, band-notch UWB-MIMO antenna. J Comput Electron 18, 680–688 (2019). https://doi.org/10.1007/s10825-019-01309-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01309-3

Keywords

Navigation