Skip to main content
Log in

Theoretical investigations on newly designed triphenylamine-based donors applied into the D–π–A and D–A–π–A type sensitizers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Three organic electron donors (T1, T2 and T3) were creatively synthesized by researchers, based on their extraordinary characteristics under the experimental conditions. The three original donors were selected and designed to substitute the primary donors of two dye molecules of different types LJ1 (D–π–A) and WS4 (D–A–π–A). In the subsequent theoretical investigations, density functional theory (DFT) and time-dependent DFT (TD-DFT) were employed to explore and simulate the fundamental parameters for these six potential sensitizers in dye-sensitized solar cells (DSSCs). For the essential parameters in evaluating the energy conversion process, such as oscillator strength (f) and light harvesting efficiency (LHE), the driving force of electron injection (ΔGinject) vertical dipole moments (μnormal) and driving force of regeneration (ΔGregen) were simulated. In addition, energy levels and the orbital compositions, absorption spectra, natural bond orbital (NBO) analysis from S0 to S1, distance between hole and electron centroid (DCT), average hole-electron distance (Δr) upon photoexcitation, overlap distance of hole and electron (S), transferred charge (ΔQ) for intramolecular charge transfer (ICT) processing, excited lifetime and electron injection lifetime of the six chromophores were systematically computed. Because of the different configurations formed in the donor motif, the correlative properties of the six newly designed sensitizers compared with prototype sensitizers of LJ1 and WS4 were altered and promoted significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607

    Article  Google Scholar 

  2. O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  3. Liu, W.-H., Wu, I.-C., Lai, C.-H., Lai, C.-H., Chou, P.-T., Li, Y.-T., Chen, C.-L., Hsu, Y.-Y., Chi, Y.: Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chem. Commun. 81, 5152 (2008). https://doi.org/10.1039/b808535h

    Article  Google Scholar 

  4. Zhu, W., Wu, Y., Wang, S., Li, W., Li, X., Chen, J., Wang, Z.S., Tian, H.: Organic D–A–π–A solar cell sensitizers with improved stability and spectral response. Adv. Funct. Mater. 21, 756–763 (2011). https://doi.org/10.1002/adfm.201001801

    Article  Google Scholar 

  5. Luo, C., Bi, W., Deng, S., Zhang, J., Chen, S., Li, B., Liu, Q., Peng, H., Chu, J.: Indolo[3,2,1-jk]carbazole derivatives-sensitized solar cells: effect of π-bridges on the performance of cells. J. Phys. Chem. C 118, 14211–14217 (2014). https://doi.org/10.1021/jp503455m

    Article  Google Scholar 

  6. Ning, Z., Zhang, Q., Wu, W., Pei, H., Liu, B., Tian, H.: Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 73, 3791–3797 (2008). https://doi.org/10.1021/jo800159t

    Article  Google Scholar 

  7. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  8. Hariharan, P.C., Pople, J.A.: The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta. 28, 213–222 (1973). https://doi.org/10.1007/BF00533485

    Article  Google Scholar 

  9. Li, Y., Pullerits, T., Zhao, M., Sun, M.: Theoretical characterization of the PC 60 BM:PDDTT model for an organic solar cell. J. Phys. Chem. C 115, 21865–21873 (2011). https://doi.org/10.1021/jp2040696

    Article  Google Scholar 

  10. Capodilupo, A.L., Fabiano, E., De Marco, L., Ciccarella, G., Gigli, G., Martinelli, C., Cardone, A.: Multiwfn. J. Org. Chem. 81, 3235–3245 (2016)

    Article  Google Scholar 

  11. Wadt, W.R., Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys. 82, 284–298 (1985). https://doi.org/10.1063/1.448800

    Article  Google Scholar 

  12. Li, X., Zhang, X., Hua, J., Tian, H.: Molecular engineering of organic sensitizers with o, p-dialkoxyphenyl-based bulky donors for highly efficient dye-sensitized solar cells. Mol Syst Des Eng. 2, 98–122 (2017). https://doi.org/10.1039/C7ME00002B

    Article  Google Scholar 

  13. Ning, Z., Fu, Y., Tian, H.: Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ. Sci. 3, 1170 (2010). https://doi.org/10.1039/c003841e

    Article  Google Scholar 

  14. Zhang, C.-R., Li, X.-Y., Shen, Y.-L., Wu, Y.-Z., Liu, Z.-J., Chen, H.-S.: Molecular docking toward panchromatic dye sensitizers for solar cells based upon tetraazulenylporphyrin and tetraanthracenylporphyrin. J. Phys. Chem. A 121, 2655–2664 (2017). https://doi.org/10.1021/acs.jpca.6b12979

    Article  Google Scholar 

  15. Yu, G., Yang, Y., Cao, Y., Pei, Q., Zhang, C., Heeger, A.J.: Measurement of the energy gap in semiconducting polymers using the light-emitting electrochemical cell. Chem. Phys. Lett. 259, 465–468 (1996). https://doi.org/10.1016/0009-2614(96)00768-3

    Article  Google Scholar 

  16. Capodilupo, A.L., Fabiano, E., De Marco, L., Ciccarella, G., Gigli, G., Martinelli, C., Cardone, A.: Density functional theory characterization and design of high-performance diarylamine-fluorenedyes with different π spacers for dye-sensitized solar cells. J. Org. Chem. 81, 3235–3245 (2016). https://doi.org/10.1039/C1JM13028E

    Article  Google Scholar 

  17. Grätzel, M.: Recent advances ins sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009). https://doi.org/10.1021/ar900141y

    Article  Google Scholar 

  18. Zhang, J., Li, H.-B., Zhang, J.-Z., Wu, Y., Geng, Y., Fu, Q., Su, Z.-M.: A promising anchor group for efficient organic dye sensitized solar cells with iodine-free redox shuttles: a theoretical evaluation. J Mater Chem A. 1, 14000 (2013). https://doi.org/10.1039/c3ta12311a

    Article  Google Scholar 

  19. Ardo, S., Meyer, G.J.: Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO 2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164 (2009). https://doi.org/10.1039/B804321N

    Article  Google Scholar 

  20. Hasselman, G.M., Watson, D.F., Stromberg, J.R., Bocian, D.F., Holten, D., Lindsey, J.S., Meyer, G.J.: Theoretical solar-to-electrical energy-conversion efficiencies of perylene–porphyrin light-harvesting arrays †. J Phys Chem B. 110, 25430–25440 (2006). https://doi.org/10.1021/jp064547x

    Article  Google Scholar 

  21. Capodilupo, A.L., Fabiano, E., De Marco, L., Ciccarella, G., Gigli, G., Martinelli, C., Cardone, A.: Efficient improvements in the performance of Ru(II) π-expanded terpyridyl dyes in dye-sensitized solar cells: a theoretical study. J. Org. Chem. 81, 3235–3245 (2016). https://doi.org/10.1016/j.jphotochem.2015.01.004

    Article  Google Scholar 

  22. Capodilupo, A.L., Fabiano, E., De Marco, L., Ciccarella, G., Gigli, G., Martinelli, C., Cardone, A.: Theoretical investigation of new thiazolothiazole-based D–π–A organic dyes for efficient dye-sensitized solar cell. J. Org. Chem. 81, 3235–3245 (2016). https://doi.org/10.1016/j.saa.2014.01.052

    Article  Google Scholar 

  23. Zhang, J.Z., Zhang, J., Li, H.B., Wu, Y., Xu, H.L., Zhang, M., Geng, Y., Su, Z.M.: Modulation on charge recombination and light harvesting toward high-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells: a theoretical investigation. J. Power Sources 267, 300–308 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.085

    Article  Google Scholar 

  24. Zhang, J.-Z., Li, H.-B., Geng, Y., Wen, S.-Z., Zhong, R.-L., Wu, Y., Fu, Q., Su, Z.-M.: Modification on C219 by coumarin donor toward efficient sensitizer for dye sensitized solar cells: a theoretical study. Dye Pigment. 99, 127–135 (2013). https://doi.org/10.1016/j.dyepig.2013.04.026

    Article  Google Scholar 

  25. Daeneke, T., Mozer, A.J., Uemura, Y., Makuta, S., Fekete, M., Tachibana, Y., Koumura, N., Bach, U., Spiccia, L.: Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134, 16925–16928 (2012). https://doi.org/10.1021/ja3054578

    Article  Google Scholar 

  26. Capodilupo, A.L., Fabiano, E., De Marco, L., Ciccarella, G., Gigli, G., Martinelli, C., Cardone, A.: A qualitative index of spatial extent in charge-transfer excitations. J. Org. Chem. 81, 3235–3245 (2016). https://doi.org/10.1021/ct200308m

    Article  Google Scholar 

  27. Guido, C.A., Cortona, P., Mennucci, B., Adamo, C.: On the metric of charge transfer molecular excitations: a simple chemical descriptor. J. Chem. Theory Comput. 9, 3118–3126 (2013). https://doi.org/10.1021/ct400337e

    Article  Google Scholar 

  28. Yang, L.N., Sun, Z.Z., Chen, S.L., Li, Z.S.: The effects of various anchoring groups on optical and electronic properties of dyes in dye-sensitized solar cells. Dye Pigment. 99, 29–35 (2013). https://doi.org/10.1016/j.dyepig.2013.04.015

    Article  Google Scholar 

  29. Chen, S.-L., Yang, L.-N., Li, Z.-S.: How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J. Power Sources 223, 86–93 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.053

    Article  Google Scholar 

  30. Yang, L.N., Zhou, H.Y., Sun, P.P., Chen, S.L., Li, Z.S.: A promising candidate with D–A–A–A architecture as an efficient sensitizer for dye-densitized solar cells. ChemPhysChem 16, 601–606 (2015). https://doi.org/10.1002/cphc.201402745

    Article  Google Scholar 

  31. Yu, P., Zhang, F., Li, M., He, R.: Influence of position of auxiliary acceptor in D–A–π–A photosensitizes on photovoltaic performances of dye-sensitized solar cells. J. Mater. Sci. 50, 7333–7342 (2015). https://doi.org/10.1007/s10853-015-9290-8

    Article  Google Scholar 

  32. Muscat, J.P., Newns, D.M.: Chemisorption on metals. Prog. Surf. Sci. 9, 1–43 (1978). https://doi.org/10.1016/0079-6816(78)90005-9

    Article  Google Scholar 

  33. Persson, P., Lundqvist, M.J., Ernstorfer, R., Goddard, W.A., Willig, F.: Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J. Chem. Theory Comput. 2, 441–451 (2006). https://doi.org/10.1021/ct050141x

    Article  Google Scholar 

  34. Gomer, R.: Chemisorption on Metals. Presented at the (1975)

  35. Sudyoadsuk, T., Pansay, S., Morada, S., Rattanawan, R., Namuangruk, S., Kaewin, T., Jungsuttiwong, S., Promarak, V.: Synthesis and characterization of D–D–π–A–type organic dyes bearing carbazole-carbazole as a donor moiety (D–D) for efficient dye-sensitized solar cells. Eur. J. Org. Chem. 2013, 5051–5063 (2013). https://doi.org/10.1002/ejoc.201300373

    Article  Google Scholar 

  36. Fitri, A., Benjelloun, A.T., Benzakour, M., McHarfi, M., Hamidi, M., Bouachrine, M.: Theoretical investigation of new thiazolothiazole-based D–π–A organic dyes for efficient dye-sensitized solar cell. Spectrochim Acta: A Mol Biomol Spectrosc. 124, 646–654 (2014). https://doi.org/10.1016/j.saa.2014.01.052

    Article  Google Scholar 

  37. Lu, Y.H., Liu, R.R., Zhu, K.L., Song, Y.L., Geng, Z.Y.: Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells. Mater. Chem. Phys. 181, 284–294 (2016). https://doi.org/10.1016/j.matchemphys.2016.06.060

    Article  Google Scholar 

  38. Li, Y., Li, Y., Song, P., Ma, F., Liang, J., Sun, M.: Screening and design of high-performance indoline-based dyes for DSSCs. RSC Adv. 7, 20520–20536 (2017). https://doi.org/10.1039/C6RA28396A

    Article  Google Scholar 

  39. Tan, C.J., Yang, C.S., Sheng, Y.C., Amini, H.W., Tsai, H.H.G.: Spacer effects of donor-π spacer-acceptor sensitizers on photophysical properties in dye-sensitized solar cells. J. Phys. Chem. C 120, 21272–21284 (2016). https://doi.org/10.1021/acs.jpcc.6b07032

    Article  Google Scholar 

  40. Wang, Y., Zheng, Z., Li, T., Robertson, N., Xiang, H., Wu, W., Hua, J., Zhu, W.H., Tian, H.: D–A–π–A motif quinoxaline-based sensitizers with high molar extinction coefficient for quasi-solid-state dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 8, 31016–31024 (2016). https://doi.org/10.1021/acsami.6b11152

    Article  Google Scholar 

  41. Li, M., Kou, L., Diao, L., Zhang, Q., Li, Z., Wu, Q., Lu, W., Pan, D., Wei, Z.: Theoretical study of WS-9-based organic sensitizers for unusual Vis/NIR absorption and highly efficient dye-sensitized solar cells. J. Phys. Chem. C 119, 9782–9790 (2015). https://doi.org/10.1021/acs.jpcc.5b03667

    Article  Google Scholar 

  42. Li, S.-B., Gu, D.-M., Zhang, J., Geng, Y., Zhang, M., Su, Z.-M.: Theoretical design and characterization of high-efficiency organic dyes with different electron-withdrawing groups based on C275 toward dye-sensitized solar cells. New J. Chem. 40, 9320–9328 (2016). https://doi.org/10.1039/c6nj01731b

    Article  Google Scholar 

  43. Cossi, M., Barone, V.: Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys. 115, 4708–4717 (2001). https://doi.org/10.1063/1.1394921

    Article  Google Scholar 

  44. Zhang, C.R., Liu, L., Zhe, J.W., Jin, N.Z., Ma, Y., Yuan, L.H., Zhang, M.L., Wu, Y.Z., Liu, Z.J., Chen, H.S.: The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. Int. J. Mol. Sci. 14, 5461–5481 (2013). https://doi.org/10.3390/ijms14035461

    Article  Google Scholar 

  45. Lin, L.Y., Tsai, C.H., Wong, K.T., Huang, T.W., Hsieh, L., Liu, S.H., Lin, H.W., Wu, C.C., Chou, S.H., Chen, S.H., Tsai, A.I.: Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells. J. Org. Chem. 75, 4778–4785 (2010). https://doi.org/10.1021/jo100762t

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge computing resources support from the Supercomputing Center of Cold and Arid Region Environment and Engineering Research Institute of Chinese Academy of Sciences, Gansu Province Supercomputer Center and Institute of Functional Material Chemistry of Northeast Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Lu, X., Sheng, Y. et al. Theoretical investigations on newly designed triphenylamine-based donors applied into the D–π–A and D–A–π–A type sensitizers. J Comput Electron 17, 1816–1834 (2018). https://doi.org/10.1007/s10825-018-1246-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1246-1

Keywords

Navigation