Skip to main content
Log in

Four-element lens array antenna for advanced point-to-(multi)point high-bandwidth wireless communication

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The aim of this work is to propose a wideband high-gain four-element (2 × 2) lens array antenna with operating frequency in an important region of the electromagnetic spectrum which is key for next-generation high-rate communication. Frequency- and time-domain methods were used to analyze the antenna, with time-domain simulations being preferred. The antenna design started from a basic wideband microstrip antenna on Rogers RO 4350 substrate. Next, to increase the basic antenna gain, a dielectric half-sphere lens was used. Subsequently, the lens antenna was utilized as an array element to form the proposed four-element array antenna. The proposed array antenna exhibited fractional bandwidth of 98.8 % from 34.4 to 101.6 GHz with maximum gain of 16.9 dB at 101.5 GHz. Interesting computational results are presented and discussed in terms of run time, maximum utilized memory, and number of mesh cells for each development step of the antenna. Finally, the antenna was mounted on top of a 24-pin integrated circuit (IC); its three-dimensional (3D) radiation pattern at 60 GHz is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49, 101–107 (2011)

    Article  Google Scholar 

  2. Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102, 366–385 (2014)

    Article  Google Scholar 

  3. Fisher, R.: 60 GHz WPAN standardization within IEEE 802.15.3c. In: 2007 International Symposium on Signals, Systems and Electronics, pp. 103–105 (2007)

  4. Ichkov, A., Atanasovski, V., Gavrilovska, L.: Potentials for application of millimeter wave communications in cellular networks. Wirel. Pers. Commun. 92, 279–295 (2017)

    Article  Google Scholar 

  5. Banerjee, P., Acharyya, A., Biswas, A., Bhattacharjee, A.K.: Effect of magnetic field on the RF performance of millimeter-wave IMPATT source. J. Comput. Electron. 15, 210–221 (2016)

    Article  Google Scholar 

  6. Bandyopadhyay, A.M., Acharyya, A., Banerjee, J.P.: Multiple-band large-signal characterization of millimeter-wave double avalanche region transit time diode. J. Comput. Electron. 13, 769–777 (2014)

    Article  Google Scholar 

  7. Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J. Comput. Electron. 12, 511–525 (2013)

    Article  Google Scholar 

  8. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  9. Liu, D., Pfeiffer, U., Grzyb, J., Gaucher, B.: Advanced Millimeter-Wave Technologies: Antennas, Packaging and Circuits. Wiley, Hoboken (2009)

    Book  Google Scholar 

  10. Jha, K.R., Singh, G.: Analysis and design of rectangular microstrip antenna on two-layer substrate materials at terahertz frequency. J. Comput. Electron. 9, 68–78 (2010)

    Article  Google Scholar 

  11. Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9, 31–41 (2010)

    Article  Google Scholar 

  12. Jha, K.R., Singh, G.: Analysis and design of terahertz microstrip antenna on photonic bandgap material. J. Comput. Electron. 11, 364–373 (2012)

    Article  Google Scholar 

  13. Singhal, S.: Asymmetrically fed octagonal Sierpinski band-notched super-wideband antenna. J. Comput. Electron. 16, 210–219 (2017)

    Article  Google Scholar 

  14. Gupta, L., Dwivedi, A.D.D.: Suppression of coupling in a microstrip antenna array by grounded defective strips in Bluetooth devices. J. Comput. Electron. 17, 436–441 (2018)

    Article  Google Scholar 

  15. Barkat, O.: Modeling and optimization of radiation characteristics of triangular superconducting microstrip antenna array. J. Comput. Electron. 13, 657–665 (2014)

    Article  Google Scholar 

  16. Koutsoupidou, M., Karanasiou, I.S., Uzunoglu, N.: Substrate constructed by an array of split ring resonators for a THz planar antenna. J. Comput. Electron. 13, 593–598 (2014)

    Article  Google Scholar 

  17. Hao, Z.C., Li, B.W.: Developing wideband planar millimeter-wave array antenna using compact magneto-electric dipoles. IEEE Antennas Wirel. Propag. Lett. 16, 2102–2105 (2017)

    Article  Google Scholar 

  18. Hosono, R., Uemichi, Y., Han, X., Guan, N., Nakatani, Y.: A Bandwidth-enhanced millimeter-wave microstrip comb-line array antenna with parasitic elements on liquid crystal polymer substrate. In: 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1726–1727 (2014)

  19. Parment, F., Ghiotto, A., Vuong, T.P., Duchamp, J.M., Wu, K.: Millimetre-wave air-filled substrate integrated waveguide slot array antenna. Electron. Lett. 53, 704–706 (2017)

    Article  Google Scholar 

  20. Lee, B., Yoon, Y.: Low-profile, low-cost, broadband millimeter-wave antenna array for high-data-rate WPAN systems. IEEE Antennas Wirel. Propag. Lett. 16, 1957–1960 (2017)

    Article  Google Scholar 

  21. Qureshi, A.A., Klymyshyn, D.M., Tayfeh, M., Mazhar, W., Börner, M., Mohr, J.: Template-based dielectric resonator antenna arrays for millimeter-wave applications. IEEE Trans. Antennas Propag. 65, 4576–4584 (2017)

    Article  Google Scholar 

  22. Li, Y., Luk, K.M.: A multibeam end-fire magnetoelectric dipole antenna array for millimeter-wave applications. IEEE Trans. Antennas Propag. 64, 2894–2904 (2016)

    Article  Google Scholar 

  23. Wang, P., Li, Y., Peng, Y., Liew, S.C., Vucetic, B.: Non-uniform linear antenna array design and optimization for millimeter-wave communications. IEEE Trans. Wirel. Commun. 15, 7343–7356 (2016)

    Article  Google Scholar 

  24. Sadiku, M., Chen, C.: Numerical Techniques in Electromagnetics, 2nd edn. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  25. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, New York (2013)

    Google Scholar 

  26. Jha, K.R., Singh, G.: Analysis of narrow terahertz microstrip transmission-line on multilayered substrate. J. Comput. Electron. 10, 186–194 (2011)

    Article  Google Scholar 

  27. Collin, R.E.: Foundations for Microwave Engineering. Wiley, Hoboken (2007)

    Google Scholar 

  28. Hao, Y., Mittra, R.: FDTD Modeling of Metamaterials: Theory and Applications. Artech House, Norwood (2008)

    MATH  Google Scholar 

  29. Berenger, J.P.: The Huygens subgridding for the numerical solution of the Maxwell equations. J. Comput. Phys. 230, 5635–5659 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behbod Ghalamkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridani, M., Ghalamkari, B. Four-element lens array antenna for advanced point-to-(multi)point high-bandwidth wireless communication. J Comput Electron 17, 1082–1089 (2018). https://doi.org/10.1007/s10825-018-1204-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1204-y

Keywords

Navigation