Advertisement

Journal of Computational Electronics

, Volume 17, Issue 3, pp 1019–1028 | Cite as

Design, modeling and analysis of dual-feed defected ground microstrip patch antenna with wide axial ratio bandwidth

  • Mukesh Kumar Khandelwal
  • Sachin Kumar
  • Binod Kumar Kanaujia
Article
  • 85 Downloads

Abstract

In this paper, a low profile microstrip patch antenna with defected ground structure is proposed for wide impedance and axial ratio bandwidth. The antenna structure consists of two feed lines with a circular defect loaded in the ground surface. The proposed antenna shows an impedance bandwidth of 71.92% ranging from 8.95 to 19 GHz covering X, Ku and K band applications. The mutual coupling between the two feed lines is suppressed by means of a single and double arc-shaped defect embedded in the ground plane. The mutual coupling is suppressed to a level of − 37.5 dB with improved radiation performance. The measured 3-dB axial ratio bandwidth of the proposed antenna ranges from 8.85 to 11 GHz. An equivalent circuit model of the designed antenna is also proposed for theoretical analysis and theoretical results are verified with simulated and measured results.

Keywords

Circular polarization (CP) Defected ground structure (DGS) Mutual coupling Wideband 

References

  1. 1.
    Dong, Y., Toyao, H., Itoh, T.: Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans. Antennas Propag. 59(11), 4329–4333 (2011)CrossRefGoogle Scholar
  2. 2.
    Wong, H., So, K.K., Ng, K.B., Luk, K.M., Chan, C.H., Xue, Q.: Virtually shorted patch antenna for circular polarization. IEEE Antennas Wirel. Propag. Lett. 9, 1213–1216 (2010)CrossRefGoogle Scholar
  3. 3.
    Lam, K.Y., Luk, K.M., Lee, K.F., Wong, H., Ng, K.B.: Small circularly polarized U-Slot wideband patch antenna. IEEE Antennas Wirel. Propag. Lett. 10, 87–90 (2011)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Chen, S., Ren, Y., Cheng, J., Liu, Q.H.: A broadband proximity-coupled dual-polarized microstrip antenna with L-shape backed cavity for X-band applications. AEU-Int. J. Electron. Commun. 69(9), 1226–1232 (2015)CrossRefGoogle Scholar
  5. 5.
    Deng, C., Li, Y., Zhang, Z., Pan, G., Feng, Z.: Dual-band circularly polarized rotated patch antenna with a parasitic circular patch loading. IEEE Antennas Wirel. Propag. Lett. 12, 492–495 (2013)CrossRefGoogle Scholar
  6. 6.
    Chen, C.H., Yung, E.K.N.: A novel unidirectional dual-band circularly-polarized patch antenna. IEEE Trans. Antennas Propag. 59(8), 3052–3057 (2011)CrossRefGoogle Scholar
  7. 7.
    Gautam, A.K., Kanaujia, B.K.: A novel dual-band asymmetric slit with defected ground structure microstrip antenna for circular polarization operation. Microw. Opt. Technol. Lett. 55(6), 1198–1201 (2013)CrossRefGoogle Scholar
  8. 8.
    Gautam, A.K., Benjwal, P., Kanaujia, B.K.: A compact square microstrip antenna for circular polarization. Microw. Opt. Technol. Lett. 54(4), 897–900 (2012)CrossRefGoogle Scholar
  9. 9.
    Gautam, A.K., Kunwar, A., Kanaujia, B.K.: Circularly polarized arrowhead-shape slotted microstrip antenna. IEEE Antennas Wirel. Propag. Lett. 13, 471–474 (2014)CrossRefGoogle Scholar
  10. 10.
    Farswan, A., Gautam, A.K., Kanaujia, B.K., Rambabu, K.: Design of Koch fractal circularly polarized antenna for handheld UHF RFID reader applications. IEEE Trans. Antennas Propag. 64(2), 771–775 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guha, D., Biswas, S., Joseph, T., Sebastian, M.T.: Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas. Electron. Lett. 44(14), 836–837 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhu, F.G., Xu, J.D., Xu, Q.: Reduction of mutual coupling between closely-packed antenna elements using defected ground structure. Electron. Lett. 45(12), 601–602 (2009)CrossRefGoogle Scholar
  13. 13.
    Chung, Y., Jeon, S.-S., Ahn, D., Choi, J.-I., Itoh, T.: High isolation dual-polarized patch antenna using integrated defected ground structure. IEEE Microw. Wirel. Compon. Lett. 14(1), 4–6 (2004)CrossRefGoogle Scholar
  14. 14.
    Xiao, S., Tang, M.C., Bai, Y.Y., Gao, S., Wang, B.Z.: Mutual coupling suppression in microstrip array using defected ground structure. IET Microw. Antennas Propag. 5(12), 1488–1494 (2011)CrossRefGoogle Scholar
  15. 15.
    Garg, R., Bhartia, P., Bahl, I., Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Norwood (2001)Google Scholar
  16. 16.
    Tang, W., Chow, Y.L., Tsang, K.F.: Different microstrip line discontinuities on a single field-based equivalent circuit model. IEE Proc. Microw. Antennas Propag. 151(3), 256–262 (2004)CrossRefGoogle Scholar
  17. 17.
    Terman, F.E.: Electronic and Radio Engineering. McGraw Hill, New York (1955)Google Scholar
  18. 18.
    Caloz, C., Okabe, H., Iwai, T., Itoh, T.: A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microw. Wirel. Compon. Lett. 14(4), 133–135 (2004)CrossRefGoogle Scholar
  19. 19.
    Wolff, E.A.: Antenna Analysis. Artech House, Norwood (1988)Google Scholar
  20. 20.
    Larsen, N.V., Breinbjerg, O.: An L-band, circularly polarised, dual-feed, cavity backed annular slot antenna for phased-array applications. Microw. Opt. Technol. Lett. 48(5), 873–878 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringBhagwan Parshuram Institute of TechnologyRohiniIndia
  2. 2.Department of Electronics and Communication EngineeringSRM Institute of Science and TechnologyChennaiIndia
  3. 3.School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations