Journal of Computational Electronics

, Volume 17, Issue 3, pp 881–887 | Cite as

Thermoelectric, electronic and structural properties of CuNMn3 cubic antiperovskite

  • Y. Benmalem
  • A. Abbad
  • W. Benstaali
  • H. A. Bentounes
  • T. Seddik
  • T. Lantri


Using first-principles calculations, in this work we report the structural, electronic and, for the first time, thermoelectric properties of CuNMn3 cubic antiperovskite. The structural properties are explored using GGA and \(\hbox {GGA}{+}\hbox {U}\) approximations. Structural optimization shows that the compound is stable in the ferrimagnetic phase, and the electronic properties confirm the metallicity of this compound. At room temperature, high values of the Seebeck coefficient are obtained between \(-\) 0.8 and 0.5 \(\upmu (\hbox {eV})\) chemical potential, whereas outside this region the Seebeck coefficient diminishes. Also, thermal conductivities are minimal in this region of chemical potential; therefore, the material can be used to achieve thermocouples. Thermal conductivity is high for 900 K. The maximum electrical conductivity is obtained at 0.38 \(\upmu (\hbox {eV})\) chemical potential, with a value of \(4.15\times 10^{20}(\Omega ~\hbox {ms})^{-1}\). The figure of merit ZT values obtained are still low, so for thermoelectric applications of the material, it is necessary to improve the figure of merit coefficient by doping the material with a suitable element.


Antiperovskite Figure of merit Seebeck coefficient Thermal conductivity Electrical conductivity 


  1. 1.
    Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., Sasaki, T., Kanomata, T.: Giant magneto resistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63, 024426–024433 (2000)CrossRefGoogle Scholar
  2. 2.
    Li, Y.B., Li, W.F., Feng, W.J., Zhang, Y.Q., Zhang, Z.D.: Magnetic, transport and magnetotransport properties of \(\text{ Mn }_{3+{\rm x}}\text{ Sn }_{1-{\rm x}}\text{ C }\) and \(\text{ Mn }_{3}\text{ Zn }_{{\rm y}}\text{ Sn }_{1-{\rm y}}\text{ C }\) compounds. Phys. Rev. B 72, 024411–024412 (2005)CrossRefGoogle Scholar
  3. 3.
    Wang, B.S., Tong, P., Sun, Y.P., Li, L.J., Tang, W., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H.: Enhanced giant magnetoresistance in Ni-doped antiperovskite compounds \(\text{ GaCMn }_{3-{\rm x}}\text{ Ni }_{{\rm x}}\) (\(\text{ x }=0.05,0.10\)). Appl. Phys. Lett. 95(22), 222509–222514 (2009)CrossRefGoogle Scholar
  4. 4.
    Yang, C., Tong, P., Lin, J.C., Lin, S., Cui, D.P., Wang, B.S., Song, W.H., Lu, W.J., Sun, Y.P.: Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3. J. Appl. Phys. 116, 033902–033910 (2014)CrossRefGoogle Scholar
  5. 5.
    Tong, P., Sun, Y.P., Zhu, X.B., Song, W.H.: Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3. Phys. Rev. B 74(22), 224416–224422 (2006)CrossRefGoogle Scholar
  6. 6.
    Tong, P., Sun, Y.P., Zhu, X.B., Song, W.H.: Strong electron–electron correlation in the antiperovskite compound GaCNi3. Phys. Rev. B 73, 245106–245107 (2006)CrossRefGoogle Scholar
  7. 7.
    Yu, M.-H., Lewis, L.H., Moodenbaugh, A.R.: Large magnetic entropy change in the metallic antiperovskite Mn3GaC. J. Appl. Phys. 93, 10128–10132 (2003)CrossRefGoogle Scholar
  8. 8.
    Wang, B.S., Tong, P., Sun, Y.P., Zhu, X.B., Luo, X., Li, G., Song, W.H., Yang, Z.R., Dai, J.M.: Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds \(\text{ Ga }1-x\text{ CMn }3+x\) (\(x=0, 0.06, 0.07\) and 0.08). J. Appl. Phys. 105, 083907–083920 (2009)CrossRefGoogle Scholar
  9. 9.
    Wang, B.S., Lin, J.C., Tong, P., Zhang, L., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H., Dai, J.M., Sun, Y.P.: Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108, 093925–093931 (2010)CrossRefGoogle Scholar
  10. 10.
    ÇAkır, O., Acet, M.: Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements. Appl. Phys. Lett. 100, 202404–202409 (2012)CrossRefGoogle Scholar
  11. 11.
    Song, X., Sun, Z., Huang, Q., Rettenmayr, M., Liu, X.M., Seyring, M., Li, G.N., Rao, G.H., Yin, F.X.: Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 23(40), 4690–4692 (2011)CrossRefGoogle Scholar
  12. 12.
    Wang, C., Chu, L.H., Yao, Q.R., Sun, Y., Wu, M.M., Ding, L., Yan, J., Na, Y.Y., Tang, W.H., Li, G.N., Huang, Q., Lynn, J.W.: Tuning the range, magnitude, and sign of the thermal expansion in intermetallic \(\text{ Mn }_{3}(\text{ Zn },\text{ M })_{{\rm x}}\text{ N }(\text{ M } = \text{ Ag },\text{ Ge })\). Phys. Rev. B 85(22), 220103–220110 (2012)CrossRefGoogle Scholar
  13. 13.
    Song, B., Jian, J., Bao, H., Lei, M., Li, H.: Observation of spin-glass behavior in antiperovskite Mn3GaN. Appl. Phys. Lett. 92(19), 192511–192517 (2008)CrossRefGoogle Scholar
  14. 14.
    Huang, R.J., Li, L.F., Cai, F.S., Xu, X.D., Qian, L.H.: Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 93, 081902–081907 (2008)CrossRefGoogle Scholar
  15. 15.
    Toberer, E.S., May, A.F., Scanlon, C.J., Snyder, G.J.: Thermoelectric properties of \(p\)-type LiZnSb: assessment of \(ab\) initio calculations. J. Appl. Phys. 105(6), 063701–063706 (2009)CrossRefGoogle Scholar
  16. 16.
    Chi, E.O., Kim, S., Hur, N.H.: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120, 307–310 (2001)CrossRefGoogle Scholar
  17. 17.
    Takenaka, K., Takagi, H.: Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87(2005), 261902–261907 (2005)CrossRefGoogle Scholar
  18. 18.
    Asano, K., Koyama, K., Takenaka, K.: Magnetostriction in Mn3CuN. Appl. Phys. Lett. 92(16), 161909–161916 (2008)CrossRefGoogle Scholar
  19. 19.
    Kohn, W., Sham, L.S.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975)CrossRefGoogle Scholar
  21. 21.
    Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003)CrossRefGoogle Scholar
  22. 22.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K-An Augmented Plane Wave and Local Orbital Program for Calculating Crystal Properties. Technische Universität Wien, Wien (2001)Google Scholar
  23. 23.
    Rached, H., Bendaoudia, S., Rached, D.: Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater. Chem. Phys. 193, 453–469 (2017)CrossRefGoogle Scholar
  24. 24.
    Benmhidi, H., Rached, H., Rached, D., Benkabou, M.: Ab initio study of electronic structure, elastic and transport properties of fluoroperovskite \(\text{ LiBeF }_{3}\). J. Electron. Mater. 46(4), 2205–2210 (2017)CrossRefGoogle Scholar
  25. 25.
    Bentouaf, A., Mebsout, R., Rached, H., Amari, S., Reshak, A.H., Aïssa, B.: Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX2 (\(X = \text{ Co }\) and Fe). J. Alloys Compd. 689, 885–893 (2016)CrossRefGoogle Scholar
  26. 26.
    Asfour, I., Rached, H., Benalia, S., Rached, D.: Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1-xGex: an ab-initio study. J. Alloys Compd. 676, 440–451 (2016)CrossRefGoogle Scholar
  27. 27.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density gradient expension for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406–136422 (2008)CrossRefGoogle Scholar
  28. 28.
    Anisimov, V.I., Gunnarsson, O.: Density functional calculation of effective Coulomb interactions in metal. Phys. Rev. B 43, 7570–7574 (1991)CrossRefGoogle Scholar
  29. 29.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard \(U\) instead of Stoner. Phys. Rev. B 44, 943–954 (1991)CrossRefGoogle Scholar
  30. 30.
    Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zahid, A., Ahmad, I., Shafiq, M., Khan, I.: Magneto-electronic studies of anti-perovskites NiNMn3 and ZnNMn3. Comput. Mater. Sci. 81, 141–145 (2014)CrossRefGoogle Scholar
  32. 32.
    Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kim, J.Y., Oh, M.W., Lee, S., Cho, Y.C., Yoon, J.H., Lee, G.W., Cho, C.R., Park, C.H., Jeong, S.Y.: Abnormal drop in electrical resistivity with impurity doping of with single-crystal Ag. Sci. Rep. 4, 5450–5454 (2014)CrossRefGoogle Scholar
  34. 34.
    Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first principles calculations. Phys. Rev. B 68(6), 125210–125211 (2003)CrossRefGoogle Scholar
  35. 35.
    Na, Y., Wang, C., Tomasella, E., Cellier, J., Xiang, J.: Effect of Cu doping on structural and magnetic properties of antiperovskite \(\text{ Mn }_{3}\text{ Ni(Cu)N }\) thin films. J. Alloys Compd. 647, 35–40 (2015)CrossRefGoogle Scholar
  36. 36.
    Bilal, M., Ahmad, S.I., Jalali-Asadabadi, S., Ahmad, R., Shafiq, M.: DFT and post-DFT studies of metallic MXY3-type compounds for low temperature TE applications. Solid State Commun. 243, 28–35 (2016)CrossRefGoogle Scholar
  37. 37.
    Bilal, M., Ahmad, I., Jalali-Asadabadi, S., Ahmad, R., Maqbool, M.: Thermoelectric properties of metallic antiperovskites \(\text{ AXD }_{3}\) (\(A = \text{ Ge, } \text{ Sn, } \text{ Pb, } \text{ Al, } \text{ Zn, } \text{ Ga }\); \(X=\text{ N, } \text{ C }\); \(D=\text{ Ca, } \text{ Fe, } \text{ Co }\)). Electron. Mater. 11, 466–480 (2015)CrossRefGoogle Scholar
  38. 38.
    Bilal, M., Jalali-Asadabadi, S., Ahmad, R., Ahmad, I.: Electronic properties of antiperovskite materials from state-of-the-art density functional theory. J. Chem. 2015, 1–11 (2015)CrossRefGoogle Scholar
  39. 39.
    Rabin, O., Yu-Ming, L., Dresselhaus, M.S.: Anomalously high thermoelectric figure of merit in Bi1ÀxSbx nanowires by carrier pocket alignment. Appl. Phys. Lett. 79, 81–83 (2001)CrossRefGoogle Scholar
  40. 40.
    Takeuchi, T.: Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Mater. Trans. 50, 2359–2365 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Benmalem
    • 1
    • 2
  • A. Abbad
    • 1
    • 2
  • W. Benstaali
    • 1
    • 2
  • H. A. Bentounes
    • 2
  • T. Seddik
    • 3
  • T. Lantri
    • 1
    • 2
  1. 1.Laboratory of Technology and Solids PropertiesAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  2. 2.Faculty of Science and TechnologyAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  3. 3.Laboratoire de Physique Quantique et de Modélisation MathématiqueUniversité de MascaraMascaraAlgeria

Personalised recommendations