Skip to main content
Log in

A nonlinear model to assess DC/AC performance reliability of submicron SiC MESFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A modified nonlinear model to predict direct-current (DC) and alternating-current (AC) characteristics of submicron SiC metal–semiconductor field-effect transistors (MESFETs) is presented. Such devices are normally operated under high-bias conditions, resulting in intense channel conditions and deviation from the usual device response. It has been demonstrated that, under relatively high drain bias, the Schottky barrier depletion is modified, causing the drain current to increase rapidly and thereby making the control of the Schottky barrier gate less effective. It has been observed that, when the ratio of the transconductance to the output conductance (\(g_\mathrm{m}/g_\mathrm{d}\)) becomes less than unity, the device operational capabilities are drastically affected. Additionally, the small-signal intrinsic parameters of SiC MESFETs were assessed by evaluating the device Miller capacitances at various bias levels, revealing a significant increase in their magnitude at relatively high drain bias (\(V_{\mathrm{ds}}\ge 40\) V), which leads to deterioration of the high-frequency capabilities of the device, including the unity-gain frequency, \(f_\mathrm{T}\). Compared with the best reported model, the developed technique exhibited \(\sim 48\,\%\) improved accuracy in predicting the IV characteristics of submicron SiC MESFETs and \(\sim 63.5\,\%\) improvement in evaluating the output conductance of the device. Thus, this technique can be employed to determine device reliability under intense operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sadler, R.A., Allen, S.T., Alcorn, T.S., Pribble, W.L., Sumakeris, J., Palmour, J.W., Kehias, L.T.: SiC MESFET with output power of 50 watts CW at S-band. In: 56th annual device research conference digest, pp. 92–93 (1998)

  2. Song, N.J., Kim, J.K., Choi, C.K., Burm, J.W.: Fabrication of 4H-SiC MESFETs on conducting substrates and analysis of their premature breakdown. J. Korean Phys. Soc. 44(2), 418–422 (2004)

    Google Scholar 

  3. Gilmore, R., Besser, L.: Practical RF Circuit Design for Modern Wireless Systems: Active Circuits and Systems. Vol. II, vol. 2. Artech House, Norwood (2003)

    Google Scholar 

  4. Ahmed, M.M., Riaz, M., Ahmed, U.F.: An improved model for the I–V characteristics of submicron SiC MESFETs by evaluating the potential distribution inside the channel. J. Comput. Electron. 16(3), 514–525 (2017)

    Article  Google Scholar 

  5. Rorsman, N., Nilsson, P.Å., Eriksson, J., Andersson, K., Zirath, H.: Investigation of the scalability of 4H-SiC MESFETs for high frequency applications. In: Materials Science Forum, vol. 457. Trans Tech Publ, pp. 1229–1232 (2004)

  6. Honda, H., Ogata, M., Sawazaki, H., Ono, S., Arai, M.: RF characteristics of short-channel SiC MESFETs. In: Materials Science Forum, vol. 433. Trans Tech Publ, pp. 745–748 (2003)

  7. Yim, J.H., Seo, H.S., Lee, D.H., Kim, C.H., Kim, H.J.: Short-channel effect in 4H-SiC ion-implanted planar MESFETs. J. Korean Phys. Soc. 59(3), 2368–2371 (2011)

    Article  Google Scholar 

  8. Hjelmgren, H., Allerstam, F., Andersson, K., Nilsson, P.-A., Rorsman, N.: Transient simulation of microwave SiC MESFETs with improved trap models. IEEE Trans. Electron Devices 57(3), 729–732 (2010)

    Article  Google Scholar 

  9. Hjelmgren, H., Andersson, K., Eriksson, J., Nilsson, P.K., Südow, M., Rorsman, N.: Electro-thermal simulations of a microwave 4H-SiC MESFET on high purity semi-insulating substrate. Solid State Electron. 51(8), 1144–1152 (2007)

    Article  Google Scholar 

  10. Yuk, K.S., Branner, G.R.: An empirical large-signal model for SiC MESFETs with self-heating thermal model. IEEE Trans. Microw. Theory Tech. 56(11), 2671–2680 (2008)

    Article  Google Scholar 

  11. Ahmed, M.M.: Schottky barrier depletion modification-a source of output conductance in submicron GaAs MESFETs. IEEE Trans. Electron Devices 48(5), 830–834 (2001)

    Article  Google Scholar 

  12. Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)

    Article  Google Scholar 

  13. Cao, Q., Zhang, Y., Zhang, Y., Lv, H., Wang, Y., Tang, X., Guo, H.: Improved empirical DC I–V model for 4H-SiC MESFETs. Sci. China Ser. F: Inf. Sci. 51(8), 1184–1192 (2008)

    Google Scholar 

  14. Angelov, I., Zirath, H., Rosman, N.: A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans. Microwave Theory Tech. 40(12), 2258–2266 (1992)

    Article  Google Scholar 

  15. McCamant, A.J., McCormack, G.D., Smith, D.H.: An improved GaAs MESFET model for SPICE. IEEE Trans. Microwave Theory Tech. 38(6), 822–824 (1990)

    Article  Google Scholar 

  16. Curtice, W.R., Ettenberg, M.: A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans. Microwave Theory Tech. 33, 1383–1394 (1985)

    Article  Google Scholar 

  17. Ladbrooke, P.H.: MMIC Design: GaAs FETs and HEMTs. Artech House, Boston (1989)

    Google Scholar 

  18. Memon, N.M., Ahmed, M.M., Rehman, F.: A comprehensive four parameters I–V model for GaAs MESFET output characteristics. Solid State Electron. 51(3), 511–516 (2007)

    Article  Google Scholar 

  19. McNally, P.J., Daniels, B.: Compact DC model for submicron GaAs MESFETs including gate-source modulation effects. Microelectron. J. 32(3), 249–251 (2001)

    Article  Google Scholar 

  20. Huang, M., Goldsman, N., Chang, C.-H., Mayergoyz, I., McGarrity, J.M., Woolard, D.: Determining 4H silicon carbide electronic properties through combined use of device simulation and metal-semiconductor field-effect-transistor terminal characteristics. J. Appl. Phys. 84(4), 2065–2070 (1998)

    Article  Google Scholar 

  21. Ramezani, Z., Orouji, A.A., Agharezaei, H.: A novel symmetrical 4H-SiC MESFET: an effective way to improve the breakdown voltage. J. Comput. Electron. 15(1), 163–171 (2016)

    Article  Google Scholar 

  22. Mousa, A.A., El-Shorbagy, M.A., Abd-El-Wahed, W.F.: Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evolut. Comput. 3, 1–14 (2012)

    Article  Google Scholar 

  23. Memon, Q.D., Ahmed, M.M., Memon, N.M., Rafique, U.: An efficient mechanism to simulate DC characteristics of GaAs MESFETs using swarm optimization. In: 2013 IEEE 9th international conference on emerging technologies, pp. 1–5 (2013)

  24. Neamen, D .A.: Semiconductor Physics and Devices. McGraw-Hill Higher Education, New York (2007)

    Google Scholar 

  25. Kun, S., Chang-Chun, C., Yin-Tang, Y., Bin, C., Xian-Jun, Z., Zhen-Yang, M.: Effects of gate-buffer combined with a p-type spacer structure on silicon carbide metal semiconductor field-effect transistors. Chin. Phys. B 21(1), 017202 (2012)

    Article  Google Scholar 

  26. Hallgren, R.B., Litzenberg, P.H.: Tom3 capacitance model: linking large-and small-signal mesfet models in spice. IEEE Trans. Microwave Theory Tech. 47(5), 556–561 (1999)

    Article  Google Scholar 

  27. Sriram, S., Hagleitner, H., Namishia, D., Alcorn, T., Smith, T., Pulz, B.: High-gain SiC MESFETs using source-connected field plates. IEEE Electron Device Lett. 30(9), 952–953 (2009)

    Article  Google Scholar 

  28. Andersson, K., Südow, M., Nilsson, P.-A., Sveinbjornsson, E., Hjelmgren, H., Nilsson, J., Stahl, J., Zirath, H., Rorsman, N.: Fabrication and characterization of field-plated buried-gate SiC MESFETs. IEEE Electron Device Lett. 27(7), 573–575 (2006)

    Article  Google Scholar 

  29. Ahmed, M.M.: An improved method to estimate intrinsic small signal parameters of a GaAs MESFET from measured DC characteristics. IEEE Trans. Electron Devices 50(11), 2196–2201 (2003)

    Article  Google Scholar 

  30. Riaz, M., Ahmed, M.M., Rafique, U., Ahmed, U.F.: Assessment of intrinsic small signal parameters of submicron SiC MESFETs. Solid State Electron. 139(1), 80–87 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Ahmed, M.M., Rafique, U. et al. A nonlinear model to assess DC/AC performance reliability of submicron SiC MESFETs. J Comput Electron 17, 1199–1209 (2018). https://doi.org/10.1007/s10825-018-1165-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1165-1

Keywords

Navigation