Advertisement

Journal of Computational Electronics

, Volume 17, Issue 3, pp 1013–1018 | Cite as

FDTD method for the scattered-field equation to calculate the radar cross-section of a three-dimensional target

  • Jian-Xiao Liu
  • Lu Ju
  • Ling-Hui Meng
  • Yu-Jie Liu
  • Zhi-Gang Xu
  • Hong-Wei Yang
Article
  • 64 Downloads

Abstract

A discrete finite-difference time-domain (FDTD) method based on Maxwell’s equations is proposed to solve the scattered-field equation for dispersive media. The equations for the scattered field in a plasma medium are first derived, then used to calculate the radar cross-section (RCS) of three-dimensional targets, viz. a plasma sphere and a rectangular plate. When using such an FDTD method to compute the far-field scattering characteristics of a target, the near- to far-field transformation technique is generally required, which involves artificial setting a connection boundary between the total and scattered field in the computational space in order to calculate the latter and thereby the RCS of the target. This connection boundary must be set separately and appropriate computational grids added. However, by discretizing the Maxwell’s equations describing the scattered field, the resulting field in the computational space is already the scattered field and can be used directly to calculate the far-field properties of the target. In this way, the additional processing for the edge of the scattered field and computational space is avoided. Numerical calculations herein show that this FDTD approach for the scattered field is universal to some extent, being suitable for not only homogeneous but also dispersive media.

Keywords

Scattered-field equation FDTD Three-dimensional Plasma RCS 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of China (grant no. 11674174) and the Excellence Project of Nanjing Agricultural University (grant no. JF17080123).

References

  1. 1.
    Teixeira, F.L., Chew, W.C.: Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media. IEEE Trans. Geosci. Remote Sens. 38(4), 1530–1543 (2000)CrossRefGoogle Scholar
  2. 2.
    Chen, W., Guo, L., Li, J., Liu, S.: Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath. IEEE Trans. Plasma Sci. 44(12), 3235–3242 (2016)CrossRefGoogle Scholar
  3. 3.
    Liu, J.-X., Xu, H.-Y., Yang, Z.-K., Xie, X., Zhang, Y., Yang, H.-W.: A research of magnetic control ferrite photonic crystal filter. Plasmonics 12(4), 971–976 (2017)CrossRefGoogle Scholar
  4. 4.
    Mukherjee, B., Vishwakarma, D.K.: Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC. Def. Sci. J. 62(4), 228–235 (2012)CrossRefGoogle Scholar
  5. 5.
    Mukherjee, B.: Numerical solution in FDTD for absorbing boundary condition over dielectric surfaces. J. Adv. Res. Sci. Comput. IASR 4(1), 13–23 (2012)Google Scholar
  6. 6.
    Jian-Xiao, L., Jun-Liang, Z., Ming-Min, S.: Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Phys. Sin. 63(13), 137501–6 (2014). (in Chinese)Google Scholar
  7. 7.
    Malcolm, N.P., Heltzel, A.J., Sokolov, K.V., Shi, L., Howell, J.R.: Simulation of a plasmonic tip-terminated scanning nanowire waveguide for molecular imaging. Appl. Phys. Lett. 93(19), 193101–3 (2008)CrossRefGoogle Scholar
  8. 8.
    Xiang, G., Yun-hua, Z.: Near-field radar imaging simulation based on FDTD method. J. Microwav. 24(1), 1–6 (2008). (in Chinese)Google Scholar
  9. 9.
    Patil, D.S., Gautam, D.K.: Computer analysis and optimization of physical and material parameters of the blue laser diode. Opt. Commun. 201(4–6), 413–423 (2002)CrossRefGoogle Scholar
  10. 10.
    Samuel, E.P., Bhole, M.P., Patil, D.S.: Mode confinement and near field intensity analysis in a GaN-based blue–green laser diode. Semicond. Sci. Technol. 21(8), 993–997 (2006)CrossRefGoogle Scholar
  11. 11.
    Talele, K., Samuel, E.P., Patil, D.S.: Investigation of near field intensity in GAN MQW in 300–375 nanometer wavelength ranges. J. Electromagn. Waves Appl. 22(8–9), 1122–1130 (2008)CrossRefGoogle Scholar
  12. 12.
    Talele, K., Patil, D.S.: Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures. Prog. Electromagn. Res. 81, 237–252 (2008)CrossRefGoogle Scholar
  13. 13.
    Shao-Bin, L., Jin-Jun, M., Nai-Chang, Y.: A JEC-FDTD implementation for anisotropic magnetized plasmas (in Chinese). Acta Phys. Sin. 53(3), 783–787 (2004)Google Scholar
  14. 14.
    Sullivan, D.M.: Frequency-dependent FDTD methods using Z transforms. IEEE Trans. Antennas Propag. 40(10), 1223–1230 (1992)CrossRefGoogle Scholar
  15. 15.
    Mosallaei, H.: FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices. IEEE Trans. Electromagn. Compat. 49(3), 649–660 (2007)CrossRefGoogle Scholar
  16. 16.
    Hong-Wei, Y., Ru-Shan, C., Yun, Z.: SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma. Acta Phys. Sin. 55(7), 3464–3469 (2006). (in Chinese)Google Scholar
  17. 17.
    Liu, J.-X., Zhang, L.-X., Zhang, J.-L., Yang, Z.-K., Yang, H.-W.: Anisotropic ferrite microstrip antenna simulation and analysis. Optik 127(8), 4144–4149 (2016)CrossRefGoogle Scholar
  18. 18.
    Jiang, Y.-N., Ge, D.-B., Ding, S.-J.: Analysis of TF-SF boundary for 2D-FDTD with plane P-wave propagation in layered dispersive and lossy media. Prog. Electromagn. Res. 83, 157–172 (2008)CrossRefGoogle Scholar
  19. 19.
    Xiaojuan, H., Debiao, G., Bing, W.: 3D FDFD algorithm with TF/SF technique for electromagnetic scattering from a composite target. Chin. J. Comput. Phys. 25(3), 309–314 (2008). (in Chinese)Google Scholar
  20. 20.
    Schneider, J.B.: Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary. IEEE Trans. Antennas Propag. 52(12), 3280–3287 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Elsherbeni, A., Demir, V.: The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations. National Defense Industry Press, Beijing (2012)Google Scholar
  22. 22.
    Beggs, J.H., Luebbers, R.J., Kunz, K.S.: User’s manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials. NASA, Tech. Rep. N92–19738, 1–31 (1992)Google Scholar
  23. 23.
    Kong, S.-C., Simpson, J.J., Backman, V.: ADE-FDTD scattered-field formulation for dispersive materials. IEEE Microw. Wirel. Compon. Lett. 18(1), 4–6 (2008)CrossRefGoogle Scholar
  24. 24.
    Kalluri, D.K.: Electromagnetic Waves, Materials, and Computation with MATLAB. CRC Press, Boca Raton (2011)Google Scholar
  25. 25.
    Xu, L., Yuan, N.: JEC-FDTD for 2-D conducting cylinder coated by anisotropic magnetized plasma. IEEE Microw. Wirel. Compon. Lett. 15(12), 892–894 (2005)CrossRefGoogle Scholar
  26. 26.
    Yu-Bo, Y., Hui, D., Qing-Liang, L.: Analysis for scattering of 3-dimentional target coated with plasma by PLRC-FDTD technique. Chin. J. Radio Sci. 22(4), 563–566 (2007). (in Chinese)Google Scholar
  27. 27.
    Xiao-chun, X., Kun, Z.: Analyzing RCS of 3D aircraft using finite difference algorithm. J. Kunming Univ. Sci. Technol. (Sci. Technol.) 32(1), 23–27 (2007). (in Chinese)Google Scholar
  28. 28.
    Debiao, G., Yubo, Y.: Finite-Difference Time-Domain Method for Electromagnetic Waves, 2nd edn. Xidian University Press, Xi’an (2005). (in Chinese)Google Scholar
  29. 29.
    Mätzler, C.: MATLAB functions for Mie scattering and absorption. In: Research Report, No. 2002-08 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian-Xiao Liu
    • 1
    • 2
  • Lu Ju
    • 2
  • Ling-Hui Meng
    • 1
  • Yu-Jie Liu
    • 2
  • Zhi-Gang Xu
    • 3
  • Hong-Wei Yang
    • 2
  1. 1.College of Electronics and Information EngineeringHengshui UniversityHengshuiPeople’s Republic of China
  2. 2.Department of Physics, College of ScienceNanjing Agricultural UniversityNanjingPeople’s Republic of China
  3. 3.College of AgricultureNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations