Skip to main content
Log in

Electronic signature of single-molecular device based on polyacetylene derivative

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We reported for polyacetylene chains containing N = 6, 10, 20 carbon atoms making bridges with gold electrodes which exhibit linear and nonlinear current/voltage signatures. The non-equilibrium quantum transport calculations are obtained from (1) low-voltage regime of 0–0.1 V and (2) high-voltage regime of 0–1.0 V. The nonlinear current/voltage behavior for high-voltage regime 0–1.0 V suggests that the system can operate as follows: (1) at 0.27 V there is a resonance captured by the I–V plot; (2) from 0.42 to 0.65 V a plateau is reached presenting a field effect transistor behavior; (3) there is a decrease in conductance from 0.66 V, and a negative differential resonance emerges with minimum value of 0.72 V. The linear I–V behavior will be reviewed, and we discuss the destructive quantum interference status. The effect occurs when we analyze the (1) low-voltage regime, and our results show that the conductance in oscillations maximizes the impact of quantum interferences (QI) on the I–V curve. In the present work, we demonstrate that QI in nanowire molecules is intimately related to the topology of the molecule’s \(\uppi \) system and establish the existence of QI-induced transmission antiresonances when different voltage regimes are triggered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dimitrakopoulos, C.D., Mascaro, D.: Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45, 11 (2001). https://doi.org/10.1147/rd.451.0011

    Article  Google Scholar 

  2. Zhang, Y., Pena, J., Ambily, S., Shen, Y., Ralph, D.M.: 30 nm channel length pentacene transistors. Adv. Mater. 15, 1632–1635 (2003). https://doi.org/10.1002/adma.200305202

    Article  Google Scholar 

  3. Reed, M.A.: Molecular-scale electronics. Proc. IEEE 87, 652–658 (1999). https://doi.org/10.1109/5.752520

    Article  Google Scholar 

  4. Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974). https://doi.org/10.1016/0009-2614(74)85031-1

    Article  Google Scholar 

  5. Del Nero, J., Laks, B.: Effect of Bipolaron type of defect on the polyacetylene-polycarbonitrile copolymer. Synth. Metals 84, 869–870 (1997). https://doi.org/10.1016/S0379-6779(96)04187-2

    Article  Google Scholar 

  6. Leal, J.F.P., Silva, S.J.S., Granhen, E.R., Silva Júnior, C.A.B., Moreira, M.D., Achete, C.A., Capaz, R.B., Del Nero, J.: Properties of charged defects on unidimensional polymers. J. Comput. Theor. Nanosci. 8, 1–9 (2011). https://doi.org/10.1166/jctn.2011.1720

    Article  Google Scholar 

  7. Beebe, J.M., Engelkes, V.B., Miller, L.L., Frisbie, C.D.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801–4 (2006). https://doi.org/10.1103/PhysRevLett.97.026801

    Article  Google Scholar 

  8. Fujihira, M., Suzuki, M., Fujii, S., Nishikawa, A.: Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Phys. Chem. Chem. Phys. 8, 3876–3884 (2006). https://doi.org/10.1039/b604945c

    Article  Google Scholar 

  9. Baer, R., Neuhauser, D.J.: Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002). https://doi.org/10.1021/ja016605s

    Article  Google Scholar 

  10. Walter, D., Baer, R., Neuhauser, D.J.: Quantum interference in polycyclic hydrocarbon molecular wires. Chem. Phys. 299, 139–145 (2004). https://doi.org/10.1016/j.chemphys.2003.12.015

    Article  Google Scholar 

  11. Emberly, E.G., Kirczenow, G.: State orthogonalization by building a Hilbert space: a new approach to electronic quantum transport in molecular wires. Phys. Rev. Lett. 81, 5205–5208 (1998). https://doi.org/10.1103/PhysRevLett.81.5205

    Article  Google Scholar 

  12. Akkermans, E., Montambaux, G.: Mesoscopic physics of electrons and photons, 1st edn, pp. 396–424. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  13. Nitzan, A.: Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001). https://doi.org/10.1146/annurev.physchem.52.1.681

    Article  Google Scholar 

  14. Granhen, E.R., Reis, M.A.L., Souza, F.M., Del Nero, J.: Transport model of controlled molecular rectifier showing unusual negative differential resistance effect. J. Nanosci. Nanotechnol. 10, 1–6 (2010). https://doi.org/10.1166/jnn.2010.3018

    Article  Google Scholar 

  15. Walczak, K.: The role of quantum interference in determining transport properties of molecular bridges. Cent. J. Chem. 2, 524–533 (2004). https://doi.org/10.2478/BF02476205

    Google Scholar 

  16. Osorio, E.A., Moth-Poulsen, K., Van der Zant, H.S.J., Paaske, J., Hedegård, P., Flensberg, K., Bendix, J., Bjørnholm, T.: Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 10, 105–110 (2010). https://doi.org/10.1021/nl9029785

    Article  Google Scholar 

  17. Xu, B., Xiao, X., Tao, N.J.: Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164 (2003). https://doi.org/10.1021/na038949j

    Article  Google Scholar 

  18. Haiss, W., Martin, S., Leary, E., Zalinge, H.V., Higgins, S.J., Bouffier, L., Nichols, R.J.: Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C. 113, 5823 (2009). https://doi.org/10.1021/jp811142d

    Article  Google Scholar 

  19. Haiss, W., Zalinge, H.V., Higgins, S.J., Bethell, D., Höbenreich, H., Schiffrin, D.J., Nichols., R.J.: Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294 (2003). https://doi.org/10.1021/ja038214e

    Article  Google Scholar 

  20. Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., Kushmerick, J.G.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006). https://doi.org/10.1103/PhysRevLett.97.026801

    Article  Google Scholar 

  21. Li, C., Pobelov, I., Wandlowski, T., Bagrets, A., Arnold, A., Evers, F.: Charge transport in single Au/alkanedithiol/Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318 (2008). https://doi.org/10.1021/ja0762386

    Article  Google Scholar 

  22. Horiguchi, K., Tsutsui, M., Kurokawa, S., Sakai, A.: Electron transmission characteristics of Au/1,4-benzenedithiol/Au junctions. Nanotechnology 20, 025204 (2009). https://doi.org/10.1088/0957-4484/20/2/025204

    Article  Google Scholar 

  23. Xiao, X., Xu, B., Tao, N.J.: Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267 (2004). https://doi.org/10.1021/nl035000m

    Article  Google Scholar 

  24. De Lima, D.B., Reis, M.A.L., De Souza, F.M., Del Nero, J.: A general rule for nanoelectronic push-pull devices based on source- bridge-drain. J. Comput. Theor. Nanosci. 5, 1–4 (2008). https://doi.org/10.1166/jctn.2008.016

    Article  Google Scholar 

  25. Kala, C.P., Priya, P.A., Thiruvadigal, D.J.: Semiempirical study of electron transport of heterocyclic molecule based molecular device. J. Comput. Theor. Nanosci. 10, 213–217 (2013). https://doi.org/10.1166/jctn.2013.2681

    Article  Google Scholar 

  26. Markussen, T., Stadler, S., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010). https://doi.org/10.1021/nl101688a

    Article  Google Scholar 

  27. Pinheiro, F.A., Da Silva, S.J.S., Granhen, E.R., Del Nero, J.: Electronic transport in biphenyl single-molecule junctions with carbon nanotubes electrodes: the role of molecular conformation and chirality. Phys. Rev. B. 81, 115456 (2010). https://doi.org/10.1103/PhysRevB.82.085402

    Article  Google Scholar 

  28. Methfessel, M., Paxton, A.T.: High-precision sampling for brillouin-zone integration in metals. Phys. Na. B Condens. Matter Mater. Phys. 40(6), 3616 (1989). https://doi.org/10.1103/PhysRevB.40.3616

  29. Gerhard, L., Edelmann, K., Homberg, J., Valásek, M., Bahoosh, S.G., Lukas, M., Pauly, F., Mayor, M., Wulfheke, W.: Na electrically actuated molecular toggle switch. Nat. Commun. 8(14672), 1–10 (2017). https://doi.org/10.1038/ncomms14672

    Google Scholar 

  30. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. J. Res. Dev. 1, 223 (1957). https://doi.org/10.1147/rd.13.0223

    MathSciNet  Google Scholar 

  31. Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986). https://doi.org/10.1103/PhysRevLett.57.1761

    Article  Google Scholar 

  32. Kyoungja, S., Hyoyoung, L.: Molecular electron transport changes upon structural phase transitions in alkanethiol molecular junctions. ACS Nano. 3, 2469–2476 (2009). https://doi.org/10.1021/nn8008917

    Article  Google Scholar 

  33. Dey, A., Singh, A., Das, D., Iyer, P.K.: Organic semiconductors: a new future of nanodevices and applications. In: Babu Krishna Moorthy, S. (ed.) Thin Film Structures in Energy Applications. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14774-1_4

    Google Scholar 

  34. Isshiki, Y., Matsuzawa, Y., Fujii, S., Kiguchi, M.: Investigation on single-molecule junctions based on current–voltage characteristics. Micromachines 9(67), 1–15 (2018). https://doi.org/10.3390/mi9020067

    Google Scholar 

  35. De Lima, D.B., Del Nero, J.: Fundamental rules to construct highly integrated organic nanowires as nanodevices. J. Comput. Theor. Nanosci. 5(7), 1–5 (2008). https://doi.org/10.1166/jctn.2008.035

    Google Scholar 

  36. Nacci, C., et al.: Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015). https://doi.org/10.1038/ncomms8397

    Article  Google Scholar 

  37. Heeger, A.J.: Semiconduction and metallic polymers: the fourth generation polymeric materials. Rev. Mod. Phys. 73, 681–700 (2001). https://doi.org/10.1103/RevModPhys.73.681

    Article  Google Scholar 

  38. Seminario, J.M., Yan, L.: Ab initio analysis of electron currents in thioalkanes. I. J. Q. Chem. 102, 711–723 (2005). https://doi.org/10.1002/qua.20384

    Article  Google Scholar 

  39. Li, Y.W., Yin, G.P., Yao, G.H.: First-principles study of substituents effect on molecular junctions: towards molecular rectification. Comput. Mater. Sci. 42, 638 (2008). https://doi.org/10.1016/j.commatsci.2007.09.018

    Article  Google Scholar 

  40. Li, S., Huang, Guang-Yao, Guo, Jing-Kun, Kang, N., Caroff, P., Xu, Hong-Qi: Ballistic transport and quantum interference in InSb nanowire devices. Chin. Phys. B. 26, 2 (2017). https://doi.org/10.1088/1674-1056/26/2/027305

    Google Scholar 

  41. Tsutsui, M., Taniguchi, M., Kawai, T.: Single-molecule identification via electric current noise. Nat. Commun. 138, 1–5 (2010). https://doi.org/10.1038/ncomms1141

    Google Scholar 

Download references

Acknowledgements

Alexandre de Souza Oliveira, and Antônio Thiago Madeira Beirão are grateful to CAPES—PROGRAM PRODOUTORAL/UFPA, CAPES/FAPESPA fellowship, respectively. Shirsley. S. da Silva and Jordan Del Nero would like to thank CNPq and INCT/Nanomateriais de Carbono for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre de S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.d.S., Beirão, A.T.M., da Silva, S.S. et al. Electronic signature of single-molecular device based on polyacetylene derivative. J Comput Electron 17, 586–594 (2018). https://doi.org/10.1007/s10825-018-1160-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1160-6

Keywords

Navigation