Electronic signature of single-molecular device based on polyacetylene derivative

  • Alexandre de S. Oliveira
  • Antonio T. M. Beirão
  • Shirsley S. da Silva
  • Jordan Del Nero


We reported for polyacetylene chains containing N = 6, 10, 20 carbon atoms making bridges with gold electrodes which exhibit linear and nonlinear current/voltage signatures. The non-equilibrium quantum transport calculations are obtained from (1) low-voltage regime of 0–0.1 V and (2) high-voltage regime of 0–1.0 V. The nonlinear current/voltage behavior for high-voltage regime 0–1.0 V suggests that the system can operate as follows: (1) at 0.27 V there is a resonance captured by the I–V plot; (2) from 0.42 to 0.65 V a plateau is reached presenting a field effect transistor behavior; (3) there is a decrease in conductance from 0.66 V, and a negative differential resonance emerges with minimum value of 0.72 V. The linear I–V behavior will be reviewed, and we discuss the destructive quantum interference status. The effect occurs when we analyze the (1) low-voltage regime, and our results show that the conductance in oscillations maximizes the impact of quantum interferences (QI) on the I–V curve. In the present work, we demonstrate that QI in nanowire molecules is intimately related to the topology of the molecule’s \(\uppi \) system and establish the existence of QI-induced transmission antiresonances when different voltage regimes are triggered.


Polyacetylene Field effect transistor (FET) Low bias High bias Quantum interference Destructive 



Alexandre de Souza Oliveira, and Antônio Thiago Madeira Beirão are grateful to CAPES—PROGRAM PRODOUTORAL/UFPA, CAPES/FAPESPA fellowship, respectively. Shirsley. S. da Silva and Jordan Del Nero would like to thank CNPq and INCT/Nanomateriais de Carbono for financial support.


  1. 1.
    Dimitrakopoulos, C.D., Mascaro, D.: Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45, 11 (2001).  https://doi.org/10.1147/rd.451.0011 CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Pena, J., Ambily, S., Shen, Y., Ralph, D.M.: 30 nm channel length pentacene transistors. Adv. Mater. 15, 1632–1635 (2003).  https://doi.org/10.1002/adma.200305202 CrossRefGoogle Scholar
  3. 3.
    Reed, M.A.: Molecular-scale electronics. Proc. IEEE 87, 652–658 (1999).  https://doi.org/10.1109/5.752520 CrossRefGoogle Scholar
  4. 4.
    Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).  https://doi.org/10.1016/0009-2614(74)85031-1 CrossRefGoogle Scholar
  5. 5.
    Del Nero, J., Laks, B.: Effect of Bipolaron type of defect on the polyacetylene-polycarbonitrile copolymer. Synth. Metals 84, 869–870 (1997).  https://doi.org/10.1016/S0379-6779(96)04187-2 CrossRefGoogle Scholar
  6. 6.
    Leal, J.F.P., Silva, S.J.S., Granhen, E.R., Silva Júnior, C.A.B., Moreira, M.D., Achete, C.A., Capaz, R.B., Del Nero, J.: Properties of charged defects on unidimensional polymers. J. Comput. Theor. Nanosci. 8, 1–9 (2011).  https://doi.org/10.1166/jctn.2011.1720 CrossRefGoogle Scholar
  7. 7.
    Beebe, J.M., Engelkes, V.B., Miller, L.L., Frisbie, C.D.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801–4 (2006).  https://doi.org/10.1103/PhysRevLett.97.026801 CrossRefGoogle Scholar
  8. 8.
    Fujihira, M., Suzuki, M., Fujii, S., Nishikawa, A.: Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Phys. Chem. Chem. Phys. 8, 3876–3884 (2006).  https://doi.org/10.1039/b604945c CrossRefGoogle Scholar
  9. 9.
    Baer, R., Neuhauser, D.J.: Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).  https://doi.org/10.1021/ja016605s CrossRefGoogle Scholar
  10. 10.
    Walter, D., Baer, R., Neuhauser, D.J.: Quantum interference in polycyclic hydrocarbon molecular wires. Chem. Phys. 299, 139–145 (2004).  https://doi.org/10.1016/j.chemphys.2003.12.015 CrossRefGoogle Scholar
  11. 11.
    Emberly, E.G., Kirczenow, G.: State orthogonalization by building a Hilbert space: a new approach to electronic quantum transport in molecular wires. Phys. Rev. Lett. 81, 5205–5208 (1998).  https://doi.org/10.1103/PhysRevLett.81.5205 CrossRefGoogle Scholar
  12. 12.
    Akkermans, E., Montambaux, G.: Mesoscopic physics of electrons and photons, 1st edn, pp. 396–424. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  13. 13.
    Nitzan, A.: Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001).  https://doi.org/10.1146/annurev.physchem.52.1.681 CrossRefGoogle Scholar
  14. 14.
    Granhen, E.R., Reis, M.A.L., Souza, F.M., Del Nero, J.: Transport model of controlled molecular rectifier showing unusual negative differential resistance effect. J. Nanosci. Nanotechnol. 10, 1–6 (2010).  https://doi.org/10.1166/jnn.2010.3018 CrossRefGoogle Scholar
  15. 15.
    Walczak, K.: The role of quantum interference in determining transport properties of molecular bridges. Cent. J. Chem. 2, 524–533 (2004).  https://doi.org/10.2478/BF02476205 Google Scholar
  16. 16.
    Osorio, E.A., Moth-Poulsen, K., Van der Zant, H.S.J., Paaske, J., Hedegård, P., Flensberg, K., Bendix, J., Bjørnholm, T.: Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 10, 105–110 (2010).  https://doi.org/10.1021/nl9029785 CrossRefGoogle Scholar
  17. 17.
    Xu, B., Xiao, X., Tao, N.J.: Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164 (2003).  https://doi.org/10.1021/na038949j CrossRefGoogle Scholar
  18. 18.
    Haiss, W., Martin, S., Leary, E., Zalinge, H.V., Higgins, S.J., Bouffier, L., Nichols, R.J.: Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C. 113, 5823 (2009).  https://doi.org/10.1021/jp811142d CrossRefGoogle Scholar
  19. 19.
    Haiss, W., Zalinge, H.V., Higgins, S.J., Bethell, D., Höbenreich, H., Schiffrin, D.J., Nichols., R.J.: Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294 (2003).  https://doi.org/10.1021/ja038214e CrossRefGoogle Scholar
  20. 20.
    Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., Kushmerick, J.G.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006).  https://doi.org/10.1103/PhysRevLett.97.026801 CrossRefGoogle Scholar
  21. 21.
    Li, C., Pobelov, I., Wandlowski, T., Bagrets, A., Arnold, A., Evers, F.: Charge transport in single Au/alkanedithiol/Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318 (2008).  https://doi.org/10.1021/ja0762386 CrossRefGoogle Scholar
  22. 22.
    Horiguchi, K., Tsutsui, M., Kurokawa, S., Sakai, A.: Electron transmission characteristics of Au/1,4-benzenedithiol/Au junctions. Nanotechnology 20, 025204 (2009).  https://doi.org/10.1088/0957-4484/20/2/025204 CrossRefGoogle Scholar
  23. 23.
    Xiao, X., Xu, B., Tao, N.J.: Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267 (2004).  https://doi.org/10.1021/nl035000m CrossRefGoogle Scholar
  24. 24.
    De Lima, D.B., Reis, M.A.L., De Souza, F.M., Del Nero, J.: A general rule for nanoelectronic push-pull devices based on source- bridge-drain. J. Comput. Theor. Nanosci. 5, 1–4 (2008).  https://doi.org/10.1166/jctn.2008.016 CrossRefGoogle Scholar
  25. 25.
    Kala, C.P., Priya, P.A., Thiruvadigal, D.J.: Semiempirical study of electron transport of heterocyclic molecule based molecular device. J. Comput. Theor. Nanosci. 10, 213–217 (2013).  https://doi.org/10.1166/jctn.2013.2681 CrossRefGoogle Scholar
  26. 26.
    Markussen, T., Stadler, S., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).  https://doi.org/10.1021/nl101688a CrossRefGoogle Scholar
  27. 27.
    Pinheiro, F.A., Da Silva, S.J.S., Granhen, E.R., Del Nero, J.: Electronic transport in biphenyl single-molecule junctions with carbon nanotubes electrodes: the role of molecular conformation and chirality. Phys. Rev. B. 81, 115456 (2010).  https://doi.org/10.1103/PhysRevB.82.085402 CrossRefGoogle Scholar
  28. 28.
    Methfessel, M., Paxton, A.T.: High-precision sampling for brillouin-zone integration in metals. Phys. Na. B Condens. Matter Mater. Phys. 40(6), 3616 (1989).  https://doi.org/10.1103/PhysRevB.40.3616
  29. 29.
    Gerhard, L., Edelmann, K., Homberg, J., Valásek, M., Bahoosh, S.G., Lukas, M., Pauly, F., Mayor, M., Wulfheke, W.: Na electrically actuated molecular toggle switch. Nat. Commun. 8(14672), 1–10 (2017).  https://doi.org/10.1038/ncomms14672 Google Scholar
  30. 30.
    Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. J. Res. Dev. 1, 223 (1957).  https://doi.org/10.1147/rd.13.0223 MathSciNetGoogle Scholar
  31. 31.
    Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986).  https://doi.org/10.1103/PhysRevLett.57.1761 CrossRefGoogle Scholar
  32. 32.
    Kyoungja, S., Hyoyoung, L.: Molecular electron transport changes upon structural phase transitions in alkanethiol molecular junctions. ACS Nano. 3, 2469–2476 (2009).  https://doi.org/10.1021/nn8008917 CrossRefGoogle Scholar
  33. 33.
    Dey, A., Singh, A., Das, D., Iyer, P.K.: Organic semiconductors: a new future of nanodevices and applications. In: Babu Krishna Moorthy, S. (ed.) Thin Film Structures in Energy Applications. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14774-1_4 Google Scholar
  34. 34.
    Isshiki, Y., Matsuzawa, Y., Fujii, S., Kiguchi, M.: Investigation on single-molecule junctions based on current–voltage characteristics. Micromachines 9(67), 1–15 (2018).  https://doi.org/10.3390/mi9020067 Google Scholar
  35. 35.
    De Lima, D.B., Del Nero, J.: Fundamental rules to construct highly integrated organic nanowires as nanodevices. J. Comput. Theor. Nanosci. 5(7), 1–5 (2008).  https://doi.org/10.1166/jctn.2008.035 Google Scholar
  36. 36.
    Nacci, C., et al.: Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015).  https://doi.org/10.1038/ncomms8397 CrossRefGoogle Scholar
  37. 37.
    Heeger, A.J.: Semiconduction and metallic polymers: the fourth generation polymeric materials. Rev. Mod. Phys. 73, 681–700 (2001).  https://doi.org/10.1103/RevModPhys.73.681 CrossRefGoogle Scholar
  38. 38.
    Seminario, J.M., Yan, L.: Ab initio analysis of electron currents in thioalkanes. I. J. Q. Chem. 102, 711–723 (2005).  https://doi.org/10.1002/qua.20384 CrossRefGoogle Scholar
  39. 39.
    Li, Y.W., Yin, G.P., Yao, G.H.: First-principles study of substituents effect on molecular junctions: towards molecular rectification. Comput. Mater. Sci. 42, 638 (2008).  https://doi.org/10.1016/j.commatsci.2007.09.018 CrossRefGoogle Scholar
  40. 40.
    Li, S., Huang, Guang-Yao, Guo, Jing-Kun, Kang, N., Caroff, P., Xu, Hong-Qi: Ballistic transport and quantum interference in InSb nanowire devices. Chin. Phys. B. 26, 2 (2017).  https://doi.org/10.1088/1674-1056/26/2/027305 Google Scholar
  41. 41.
    Tsutsui, M., Taniguchi, M., Kawai, T.: Single-molecule identification via electric current noise. Nat. Commun. 138, 1–5 (2010).  https://doi.org/10.1038/ncomms1141 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pós-graduação em Engenharia ElétricaUniversidade Federal do ParáBelémBrazil
  2. 2.Faculdade de FísicaUniversidade Federal do ParáAnanindeuaBrazil
  3. 3.Faculdade de FísicaUniversidade Federal do ParáBelémBrazil

Personalised recommendations