Journal of Computational Electronics

, Volume 17, Issue 2, pp 499–513 | Cite as

Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study

  • Fatemeh Safari
  • Morteza Fathipour
  • Arash Yazdanpanah Goharrizi


Using first-principles density functional theory, we investigated the geometrical structure and magnetic, electronic, and transport properties of blue phosphorene doped with a multitude of substitutional impurities, including both metallic and semiconducting elements. Substitutional dopants modified the properties of blue phosphorene. B, Al, Ga, Sb, Bi, and Sc substitutional dopants led to an indirect- to direct-gap transition. Blue phosphorene with C, Si, Ge, Sn, O, S, Se, and Fe substitutional dopant atoms showed dilute magnetic semiconducting properties. Furthermore, the effective mass as well as zero-bias transmission spectrum of this material support the fact that the transport properties of blue phosphorene are modified by the above-mentioned impurity atoms. The effective mass of holes for the Bi- and Sb-doped systems was about \(0.138m_{0}\), implying that these systems have high hole mobility. Meanwhile, the Sb-doped system exhibited the smallest effective mass for electrons of \(0.244m_{0}\). The results of this study illustrate that doped blue phosphorene exhibits different electronic, magnetic, transport, and optical properties from pristine blue phosphorene, which may enable many useful applications in nanoelectronics, gas sensing, optoelectronics, and spintronics.


Blue phosphorene DFT Doping Magnetism Transport properties Effective mass 


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)CrossRefGoogle Scholar
  2. 2.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  3. 3.
    Jin, C., Lin, F., Suenaga, K., Iijima, S.: Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102(19), 195505 (2009)CrossRefGoogle Scholar
  4. 4.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS\(_{2}\) transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRefGoogle Scholar
  6. 6.
    Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)CrossRefGoogle Scholar
  7. 7.
    Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12(3), 1224–1228 (2012)CrossRefGoogle Scholar
  8. 8.
    Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and Exfoliation of germanane: a germanium graphane analogue. ACS Nano 7(5), 4414–4421 (2013)CrossRefGoogle Scholar
  9. 9.
    Koppens, F.H.L., Mueller, T., Avouris, P., Ferrari, C., Vitiello, M.S., Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014)CrossRefGoogle Scholar
  10. 10.
    Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015)CrossRefGoogle Scholar
  11. 11.
    Lu, G., Wu, T., Yuan, Q., Wang, H., Wang, H., Ding, F., Xie, X., Jiang, M.: Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Neal, A.T., Zhu, Z., Xu, X., Tomanek, D., Ye, P.D., Luo, Z.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)CrossRefGoogle Scholar
  13. 13.
    Du, Y., Liu, H., Deng, Y., Ye, P.D.: Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014)CrossRefGoogle Scholar
  14. 14.
    Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)CrossRefGoogle Scholar
  15. 15.
    Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014)CrossRefGoogle Scholar
  16. 16.
    Na, J., Lee, Y.T., Lim, J.A., Hwang, D.K., Kim, G.-T., Choi, W.K., Song, Y.-W.: Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8(11), 11753–11762 (2014)CrossRefGoogle Scholar
  17. 17.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)Google Scholar
  18. 18.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)Google Scholar
  19. 19.
    Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)CrossRefGoogle Scholar
  20. 20.
    Kim, J., Baik, S.S., Ryu, S.H., Sohn, Y., Park, S., Park, B.-G., Denlinger, J., Yi, Y., Choi, H.J., Kim, K.S.: Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349(6249), 723–726 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014)CrossRefGoogle Scholar
  22. 22.
    Cheng, Y.C., Zhu, Z.Y., Mi, W.B., Guo, Z.B., Schwingenschlögl, U.: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS\(_{2}\) systems. Phys. Rev. B 87(10), 100401 (2013)CrossRefGoogle Scholar
  23. 23.
    Ramasubramaniam, A., Naveh, D.: Mn-doped monolayer MoS\(_{2}\): an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87(19), 195201 (2013)CrossRefGoogle Scholar
  24. 24.
    Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J., Tang, W.: Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J. Appl. Phys. 119(14), 143904 (2016)CrossRefGoogle Scholar
  25. 25.
    Sun, M., Wang, S., Du, Y., Yu, J., Tang, W.: Transition metal doped arsenene: a first-principles study. Appl. Surf. Sci. 389, 594–600 (2016)CrossRefGoogle Scholar
  26. 26.
    Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., Tang, W.: Magnetism in transition-metal-doped germanene: a first-principles study. Comput. Mater. Sci. 118, 112–116 (2016)CrossRefGoogle Scholar
  27. 27.
    Sun, M., Ren, Q., Zhao, Y., Chou, J.P., Yu, J., Tang, W.: Electronic and magnetic properties of 4\(d\) series transition metal substituted graphene: a first-principles study. Carbon 120, 265–273 (2017)CrossRefGoogle Scholar
  28. 28.
    Sun, M., Tang, W., Ren, Q., Zhao, Y., Wang, S., Yu, J., Du, Y., Hao, Y.: Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: a firstprinciples study. Phys. E Low Dimens. Syst. Nanostruct. 80, 142–148 (2016)CrossRefGoogle Scholar
  29. 29.
    Robertson, A.W., Montanari, B., He, K., Kim, J., Allen, C.S., Wu, Y.A., Olivier, J., Neethling, J., Harrison, N., Kirkland, A.I., Warner, J.H.: Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13(4), 1468–1475 (2013)CrossRefGoogle Scholar
  30. 30.
    Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschlögl, U., Yang, W., Zhang, X.X.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12(1), 141–144 (2012)CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Manzo, J.A., Cretu, O., Banhart, F.: Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 4(6), 3422–3428 (2010)CrossRefGoogle Scholar
  32. 32.
    Guan, J., Zhu, Z., Tománek, D.: Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113(4), 46804 (2014)CrossRefGoogle Scholar
  33. 33.
    Xie, J., Si, M.S., Yang, D.Z., Zhang, Z.Y., Xue, D.S.: A theoretical study of blue phosphorene nanoribbons based on firstprinciples calculations. J. Appl. Phys. 116(7), 73704 (2014)CrossRefGoogle Scholar
  34. 34.
    Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study. J. Phys. Chem. C 119(19), 10610–10622 (2015)CrossRefGoogle Scholar
  35. 35.
    Sun, M., Tang, W., Ren, Q., Wang, S., Yu, J., Du, Y.: A first-principles study of light non-metallic atom substituted blue phosphorene. Appl. Surf. Sci. 356, 110–114 (2015)CrossRefGoogle Scholar
  36. 36.
    Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W.: Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: a DFT calculation. Solid State Commun. 242, 36–40 (2016)CrossRefGoogle Scholar
  37. 37.
    Bai, R., Chen, Z., Gou, M., Zhang, Y.: A first-principles study of group IV and VI atoms doped blue phosphorene. Solid State Commun. 270, 76–81 (2018)CrossRefGoogle Scholar
  38. 38.
    Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Dilute magnetic semiconductor and half-metal behaviors in 3\(d\) transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11(1), 77 (2016)CrossRefGoogle Scholar
  39. 39.
    Sun, M., Chou, J.-P., Yu, J., Tang, W.: Electronic properties of blue phosphorene/graphene and blue phosphorene/graphenelike gallium nitride heterostructures. Phys. Chem. Chem. Phys. 19(26), 17324–17330 (2017)CrossRefGoogle Scholar
  40. 40.
    Sun, M., Wang, S., Yu, J., Tang, W.: Hydrogenated and halogenated blue phosphorene as Dirac materials: a first principles study. Appl. Surf. Sci. 392, 46–50 (2017)CrossRefGoogle Scholar
  41. 41.
    Banerjee, L., Mukhopadhyay, A., Sengupta, A., Rahaman, H.: Performance analysis of uniaxially strained monolayer black phosphorus and blue phosphorus n-MOSFET and p-MOSFET. J. Comput. Electron. 15(3), 919–930 (2016)CrossRefGoogle Scholar
  42. 42.
    Luo, H.C., Meng, R.S., Gao, H., Sun, X., Xiao, J., Ye, H.Y., Zhang, G.Q., Chen, X.P.: First-principles study of nitric oxide sensor based on blue phosphorus monolayer. IEEE Electron Device Lett. 38(8), 1139–1142 (2017)CrossRefGoogle Scholar
  43. 43.
    Liu, N., Zhou, S.: Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology 28(17), 175708 (2017)CrossRefGoogle Scholar
  44. 44.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Portal, D.S.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745–2779 (2002)CrossRefGoogle Scholar
  45. 45.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)CrossRefGoogle Scholar
  46. 46.
    Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 43(11), 8861–8869 (1991)CrossRefGoogle Scholar
  47. 47.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zon integrations. Phys. Rev. B 13(12), 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Zheng, H., Yang, H., Wang, H., Du, X., Yan, Y.: Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: first-principles study. J. Magn. Magn. Mater. 408, 121–126 (2016)CrossRefGoogle Scholar
  49. 49.
    Sui, X., Si, C., Shao, B., Zou, X., Wu, J., Gu, B.-L., Duan, W.: Tunable magnetism in transition-metal-decorated phosphorene. J. Phys. Chem. C 119(18), 10059–10063 (2015)CrossRefGoogle Scholar
  50. 50.
    Xu, L.-C., Song, X.-J., Yang, Z., Cao, L., Liu, R.-P., Li, X.-Y.: Phosphorene nanoribbons: passivation effect on bandgap and effective mass. Appl. Surf. Sci. 324, 640–644 (2015)CrossRefGoogle Scholar
  51. 51.
    Ghosh, B., Nahas, S., Bhowmick, S., Agarwal, A.: Electric field induced gap modification in ultrathin blue phosphorus. Phys. Rev. B 91(11), 115433 (2015)CrossRefGoogle Scholar
  52. 52.
    Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90(8), 85402 (2014)CrossRefGoogle Scholar
  53. 53.
    Suvansinpan, N., Hussain, F., Zhang, G., Chiu, C.H., Cai, Y., Zhang, Y.-W.: Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27(6), 65708 (2016)CrossRefGoogle Scholar
  54. 54.
    He, Y., Xia, F., Shao, Z., Zhao, J., Jie, J.: Surface charge transfer doping of monolayer phosphorene via molecular adsorption. J. Phys. Chem. Lett. 6(23), 4701–4710 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fatemeh Safari
    • 1
  • Morteza Fathipour
    • 2
  • Arash Yazdanpanah Goharrizi
    • 3
  1. 1.Department of Electrical Engineering, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Modeling and Simulation Laboratory, School of Electrical and Computer EngineeringUniversity of TehranTehranIran
  3. 3.Faculty of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations