Analysis and modeling of unipolar junction transistor with excellent performance: a novel DG MOSFET with \({N}^{+}{-}{P}^{-}\) junction

Article
  • 40 Downloads

Abstract

We propose herein a new dual-gate metal–oxide–semiconductor field-effect transistor (MOSFET) with just a unipolar junction (UJ-DG MOSFET) on the source side. The UJ-DG MOSFET structure is constructed from an \({N}^{+}\) region on the source side with the rest consisting of a \({P}^{-}\) region over the gate and drain, forming an auxiliary gate over the drain region with appropriate length and work function (named A-gate), converting the drain to an \({N}^{+}\) region. The new structure behaves as a MOSFET, exhibiting better efficiency than the conventional double-gate MOSFET (C-DG MOSFET) thanks to the modified electric field. The amended electric field offers advantages including improved electrical characteristics, reliability, leakage current, \({I}_{\mathrm{ON}}/I_{\mathrm{OFF}}\) ratio, gate-induced drain leakage, and electron temperature. Two-dimensional analytical models of the surface potential and electric field over the channel and drain are applied to investigate the drain current in the UJ-DG MOSFET. To confirm their accuracy, the MOSFET characteristics obtained using the 2D Atlas simulator for the UJ-DG and C-DG are analyzed and compared.

Keywords

Analytical model Band-to-band tunneling DG-MOSFET Leakage current Short-channel effects Unipolar junction 

References

  1. 1.
    Ghosh, B., Waseem Akram, M.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRefGoogle Scholar
  2. 2.
    Gundapaneni, S., Bajaj, M., Pandey, R.K., Murali, K.V.R., Ganguly, S., Kottantharayil, A.: Effect of band-to-band tunneling on junctionless transistors. IEEE Trans. Electron Devices 59(4), 1023–1029 (2012)CrossRefGoogle Scholar
  3. 3.
    Ramezani, Zeinab, Orouji, A.A.: Investigation of vertical graded channel doping in nanoscale fully-depleted SOI-MOSFET. Superlattices Microstruct. 98, 359–370 (2016)CrossRefGoogle Scholar
  4. 4.
    Chopra, M., Gill, N., Singh, H.: Performance analysis of full adder circuit using double gate MOSFET. Int. J. Comput. Appl. 129(12), 28–33 (2015)Google Scholar
  5. 5.
    Navya Sri, K., Lingaiah, J.: Design of full adder circuit using double gate MOSFET. Int. J. Adv. Technol. Innov. Res. 8(18), 3579–3582 (2016)Google Scholar
  6. 6.
    Alioto, M., Palumbon, G.: Analysis and comparison on full adder block in submicron technology. IEEE Trans. Very Large Scale Integr. VLSI Syst. 10(6), 806–823 (2002)CrossRefGoogle Scholar
  7. 7.
    Sharma, R., Pandey, S., Jain, S.B.: Analytical modeling of drain current and RF performance for double-gate fully depleted nanoscale SOI MOSFETs. J. Semicond. 33(2), 024001 (2012)CrossRefGoogle Scholar
  8. 8.
    Vishnoi, R., Kumar, M.J.: A pseudo 2D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)CrossRefGoogle Scholar
  9. 9.
    Rahimian, M., Fathipour, M.: Asymmetric junctionless nanowire TFET with built-in \(n^{+}\) source pocket emphasizing on energy band modification. J. Comput. Electron. 15(4), 1297–1307 (2016)CrossRefGoogle Scholar
  10. 10.
    Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRefGoogle Scholar
  11. 11.
    Rajasekharan, B., Hueting, R.J.E., Salm, C., van Hemert, T., Wolters, R.A.M., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRefGoogle Scholar
  12. 12.
    Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: Charge plasma p-n diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)CrossRefGoogle Scholar
  13. 13.
    Kumar, M.J., Nadda, K.: Bipolar charge plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRefGoogle Scholar
  14. 14.
    Nadda, K., Kumar, M.J.: Schottky collector bipolar transistor without impurity doped emitter and base: design and performance. IEEE Trans. Electron Devices 60(9), 2956–2959 (2013)CrossRefGoogle Scholar
  15. 15.
    Nikoli, M.V., Radi, S.M., Mini, V., Risti, M.M.: The dependence of the work function of rare earth metals on their electron structure. Microelectron. J. 27, 93–96 (1996)CrossRefGoogle Scholar
  16. 16.
    Rahimian, M., Fathipour, M.: Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric. Mater. Sci. Semicond. Process. 63, 142–152 (2017)CrossRefGoogle Scholar
  17. 17.
    Abadi, R.M.I., Ziabari, S.A.S.: Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A 122, 616 (2016)CrossRefGoogle Scholar
  18. 18.
    Device simulator Atlas: Atlas User’s Manual, Silvaco International Software, Santa Clara, CA, USA (2015)Google Scholar
  19. 19.
    Asthana, P.K., Ghosh, B., Goswami, Y., Tripathi, B.M.M.: High-speed and low-power ultradeep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron Devices 61(2), 479–485 (2014)CrossRefGoogle Scholar
  20. 20.
    Ramezani, Z., Orouji, Ali A.: Investigation of vertical graded channel doping in nanoscale fully-depleted SOI-MOSFET. Superlattices Microstruct. 98, 359–370 (2016)CrossRefGoogle Scholar
  21. 21.
    Ramezani, Z., Orouji, A.A.: Amended electric field distribution: a reliable technique for electrical performance improvement in nano scale SOI MOSFETs. J. Electron. Mater. 46(4), 2269–2281 (2017)CrossRefGoogle Scholar
  22. 22.
    Rama, M.S., Abdi, D.B.: Dopingless PNPN tunnel FET with improved performance: design and analysis. Superlattices Microstruct. 82, 430–437 (2015)CrossRefGoogle Scholar
  23. 23.
    Abdi, D.B., Kumar, M.J.: PNPN tunnel FET with controllable drain side tunnel barrier width: proposal and analysis. Superlattices Microstruct. 86, 121–125 (2015)CrossRefGoogle Scholar
  24. 24.
    Chen, J., Chan, T.Y., Chen, I.C., Ko, P.K., Hu, C.: Subbreakdown drain leakage current in MOSFET. IEEE Electron Device Lett. EDL–8, 515–517 (1987)CrossRefGoogle Scholar
  25. 25.
    Chan, T.Y., Chen, J., Ko, P.K., Hu, C.: The impact of gate-drain leakage current on MOSFET Scaling. In: IEDM Technical Digest, p. 718 (1987)Google Scholar
  26. 26.
    Schwerin, A.V., Bergner, W.: Simulation of amplified gat-induced-drain-leakage (GIDL) in short-channel SOI MOSFETs. IEEE, pp. 7–10 (1994)Google Scholar
  27. 27.
    Yuan, X., Park, J.-E., Wang, J., Zhao, E.: Characterization and analysis of gate-induced-drain-leakage current in 45 nm CMOS technology. In: IEEE International Integrated Reliability Workshop Final Report, pp. 70 – 73 (2007)Google Scholar
  28. 28.
    Banerjee, S., Coleman, J., Richardson, B., Shah, A.: A band-to-band tunneling effect in the trench transistor cell. In: Proceedings of VLSI Symposia, pp. 97–98 (1987)Google Scholar
  29. 29.
    Risch, L., Maly, R., Berger, W., Kirchen, R.: Charge losses of n-doped trench cells. In: Proceedings of Solid State Devices and Materials, pp. 585–588 (1988)Google Scholar
  30. 30.
    Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Physical model of the junctionless UTB SOI-FET. IEEE Trans. Electron Device 59, 941–948 (2012)CrossRefGoogle Scholar
  31. 31.
    Parihar, M.S., Ghosh, D., Kranti, Abhinav: Ultra low power junctionless MOSFETs for subthreshold logic applications. IEEE Trans. Electron Devices 60(5), 1540–1545 (2013)CrossRefGoogle Scholar
  32. 32.
    Dasgupta, A., Das, R., Dutta, A., Kundu, A., Sarkar, C.K.: A comparative study of analog/RF performance: symmetric and asymmetric underlap gate stack DG-MOSFETs. In: Third International Conference on Devices, Circuits and Systems, pp. 148–151 (2016)Google Scholar
  33. 33.
    Ramezani, Zeinab, Orouji, Ali A., Rahimian, Morteza: High-performance SOI MESFET by modified depletion region using a triple recessed gate. Mater. Sci. Semicond. Process. 30, 75–84 (2015)CrossRefGoogle Scholar
  34. 34.
    Sivilicic, B., Jovanovic, V., Suligoj, T.: Analytical models of front and back-gate potential distribution and threshold voltage for recessed source/drain UTB SOI MOSFETs. Solid State Electron 53, 540–547 (2009)CrossRefGoogle Scholar
  35. 35.
    Pandey, M.K., Sen, S., Gupta, R.S.: Thermal characterization of double-gate silicon-on-insulator MOSFET. J. Phys. D Appl. Phys. 32, 344 (1999)CrossRefGoogle Scholar
  36. 36.
    Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12(2), 181–188 (1960)CrossRefGoogle Scholar
  37. 37.
    Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double gate tunnel FETs. IEEE Trans. Electron Devices 61(5), 1494–1500 (2014)CrossRefGoogle Scholar
  38. 38.
    Toh, E.H., Wang, G.H., Chan, L., Samudra, G., Yeo, Y.C.: Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl. Phys. Lett. 91, 243505 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentSemnan UniversitySemnanIran

Personalised recommendations