Journal of Computational Electronics

, Volume 17, Issue 2, pp 736–744 | Cite as

Improvement in electrostatic characteristics of doped TFETs by hole layer formation

  • Deepak Soni
  • Dheeraj Sharma
  • Mohd. Aslam
  • Shivendra Yadav


We present a distinct approach to enhance the performance of physically doped tunnel field-effect transistors (TFETs) based on creation of a layer of positive charge at the semiconductor–insulator interface in the source region. Formation of such a hole layer resolves the issue related to material solubility and improves direct-current (DC) as well as high-frequency figures of merit. To implement this approach, a typical \(P^{+}\)-I-\(N^{+}\)-type physically doped TFET structure is considered. Furthermore, a metal electrode with workfunction of 4.53 eV is placed over the heavily doped \(P^{+}\) source region with a negative supply voltage. The negative voltage at the source electrode attracts holes from the source region and creates a hole layer just below the semiconductor–insulator interface. This phenomenon makes the source–channel junction abrupt and reduces the tunneling barrier width, resulting in higher tunneling generation rate of charge carriers at the source–channel junction. Thus, the proposed device shows 100-fold increased ON-state current and a threshold voltage reduction of 300 mV. Analog/radiofrequency (RF) parameters are also greatly improved compared with the conventional device. Furthermore, optimization of the spacer length (\(L_\mathrm{SG}\)), i.e., the gap between the source and gate electrode, and application of a negative voltage (\(-V_\mathrm{SE}\)) at the source electrode (SE), were applied to achieve the optimum performance. Moreover, device linearity was also analyzed in a comparative manner.


Hole concentration Hole layer Material solubility ON-state current Threshold voltage 



The authors thank the Science and Engineering Research Board, Department of Science and Technology, Government of India (established through an act of parliament) for providing financial support to carry out this work. This work was implemented under the Implementation of Sigma Delta Modulator Using Nanowire Electrically Doped Hetero Material Tunnel Field Effect Transistor (TFET) for Ultra Low Power Applications project, funded by this board.


  1. 1.
    Mohankumar, N., Syamal, B., Sarkar, C.K.: Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Electron Device Lett. 57(4), 820–826 (2010)CrossRefGoogle Scholar
  2. 2.
    Kilchytska, V., Nve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., De Meyer, K., Raynaud, C., Dehan, M., Raskin, J.-P., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Electron Device Lett. 50(3), 577–588 (2010)CrossRefGoogle Scholar
  3. 3.
    Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Bangsaruntip, S., Cohen, G.M., Majumdar, A., Sleight, J.W.: Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett. 31(9), 903905 (2010)CrossRefGoogle Scholar
  5. 5.
    Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2007)CrossRefGoogle Scholar
  6. 6.
    Boucart, K., Ionescu, A.M.: Silicon Nanowire tunnelling field-effect transistors. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRefGoogle Scholar
  7. 7.
    Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Devices Lett. 27(4), 297300 (2006)Google Scholar
  8. 8.
    Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Devices Lett. 8(8), 347349 (1987)CrossRefGoogle Scholar
  9. 9.
    Baba, T.: Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 2 Lett. 31(4B), 455457 (1992)Google Scholar
  10. 10.
    Boucart, K., Riess, W., Ionescu, A.M.: Lateral strain profile as key technology booster for all-silicon tunnel FETs. IEEE Electron Device Lett. 30(6), 656–658 (2009)CrossRefGoogle Scholar
  11. 11.
    Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2010)CrossRefGoogle Scholar
  12. 12.
    Rawat, B., Paily, R.: Analysis of graphene tunnel field-effect transistors for analog/RF applications. IEEE Trans. Electron Devices 62(8), 2663–2669 (2015)CrossRefGoogle Scholar
  13. 13.
    Ghosh, S., Koley, K., Sarkar, C.K.: Impact of the lateral straggle on the analog and RF perforamcne of TFET. Microelectron. Reliab. 55(2), 326–331 (2015)CrossRefGoogle Scholar
  14. 14.
    Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE Electron Device Soc. 2(6), 187–190 (2014)CrossRefGoogle Scholar
  15. 15.
    Sharma, A., Reza, A.K., Roy, K.: Proposal of an intrinsic-source broken-gap tunnel FET to reduce band-tail effects on subthreshold swing: a simulation study. IEEE Trans. Electron Devices 63(6), 2597–2602 (2016)CrossRefGoogle Scholar
  16. 16.
    Min, J., Wu, J., Taur, Y.: Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 34(10), 1094–1096 (2015)CrossRefGoogle Scholar
  17. 17.
    Sandow, C., Knoch, J., Urban, C., Zhao, Q.-T., Mantl, S.: Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid-State Electron. 53(10), 1126–1129 (2009)CrossRefGoogle Scholar
  18. 18.
    Schmid, H., Bjrk, M.T., Knoch, J., Karg, S., Riel, H., Riess, W.: Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett. 57(4), 820–826 (2009)Google Scholar
  19. 19.
    ATLAS device simulation soft, Silvaco. Santa Clara, CA, USA (2012)Google Scholar
  20. 20.
    Sahay, S., Kumar, M.J.: Symmetric operation in an extended back gate JLFET for scaling to the 5-nm regime considering quantum confinement effects. IEEE Trans. Electron Devices 64(1), 21–27 (2017)CrossRefGoogle Scholar
  21. 21.
    Padilla, J.L., Gmiz, F., Godoy, A.: A simple approach to quantum confinement in tunneling field-effect transistors. IEEE Electron Devices Lett. 33(10), 1342–1344 (2012)CrossRefGoogle Scholar
  22. 22.
    Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503-1–143503-3 (2011).
  23. 23.
    Tirkey, S., Sharma, D., Yadav, D.S., Yadav, S.: Analysis of a novel metal implant junctionless tunnel field-effect transistor for better DC and analog/RF electrostatic parameters. IEEE Trans. Electron Devices 64(9), 3943–3950 (2017)CrossRefGoogle Scholar
  24. 24.
    Kondekar, P.N., Nigam, K., Pandey, S., Sharma, D.: Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE J. Solid-State Circuits 64(2), 412–418 (2017)Google Scholar
  25. 25.
    Veendrick, H.J.M.: Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE J. Solid-State Circuits 19(4), 468–473 (1984)CrossRefGoogle Scholar
  26. 26.
    Kim, M.S., Liu, H., Li, X., Datta, S., Narayanan, V.: A steep-slope tunnel FET based SAR analog-to-digital converter. IEEE Trans. Electron Devices 61(11), 3661–3667 (2014)CrossRefGoogle Scholar
  27. 27.
    Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. 16(2), 227234 (2016)Google Scholar
  28. 28.
    Raad, B.R., Tirkey, S., Sharma, D., Kondekar, P.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)CrossRefGoogle Scholar
  29. 29.
    Saifullah, M.S.M., Ondarcuhu, T., Koltsov, D.K., Joachim, C., Welland, M.E.: A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics. Nanotechnology 13, 659662 (2002)CrossRefGoogle Scholar
  30. 30.
    Deshmukh, M.M., Prieto, A.L., Gu, Q., Park, H.: Fabrication of asymmetric electrode pairs with nanometer separation made of two distinct metals. Nano Lett. 3(10), 1383–1385 (2003).
  31. 31.
    Guillorn, M.A., Carra, D.W., Tiberio, R.C., Greenbaum, E., Simpson, M.L.: Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization. JVST B Microelectron. Nanometer Struct. 18, 1177–1181 (2000)CrossRefGoogle Scholar
  32. 32.
    Naitoh, Y., Ohata, T., Matsushita, R., Okawa, E., Horikawa, M., Oyama, M., Mukaida, M., Wang, D.F., Kiguchi, M., Tsukagoshi, K., Ishida, T.: Self-aligned formation of sub-1-nm gaps utilizing electromigration during metal deposition. ACS Appl. Mater. Interfaces 5, 1–24 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PDPM Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia

Personalised recommendations