Skip to main content
Log in

Application of the generalized logistic functions in modeling inversion charge density of MOSFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The application of generalized logistic (GL) functions of the second type in fitting an important smoothing factor in a charge-based MOSFET model has been proposed. Beside the accurate results for the inversion charge density (ICD), this the GL-functional form of the smoothing factor enables also continuous and varied transitions of the ICD between weak and strong inversion region. Simulated values of the drain current, capacitance and transconductance match closely with numerical data for a wide range of substrate doping and oxide thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Enz, C., et al.: An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circuits Signal Process. 8, 83–114 (1995)

    Article  Google Scholar 

  2. Vimala, P., et al.: Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects. J. Semicond. 34(11), 114001 (2013)

    Article  Google Scholar 

  3. Wu, W., et al.: Surface-potential-based compact modeling of dynamically depleted SOI MOSFETs. Solid State Electron. 54(5), 595–604 (2010)

    Article  Google Scholar 

  4. Van Dort, M.J., et al.: A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions. Solid State Electron. 37(3), 411–414 (1994)

    Article  Google Scholar 

  5. Jia, K., Sun, W.: A novel surface potential-based short channel MOSFET model for circuit simulation. Microelectron. J. 42(10), 1169–1175 (2011)

    Article  Google Scholar 

  6. Yadav, B.P.K., Dutta, A.K.: An analytical model of the first eigen energy level for MOSFETs having ultrathin gate oxides. J. Semicond. Technol. Sci. 10(3), 203–212 (2010)

    Article  Google Scholar 

  7. He, J., et al.: BSIM 5: an advanced charge based MOSFET model for nanoscale VLSI circuit simulation. Solid State Electron. 51, 433–444 (2007)

    Article  Google Scholar 

  8. Eftimie, S., Rusu, A.: MOSFET model with simple extraction procedures suitable for sensitive analog simulations. Rom. J. Inf. Sci. Technol. 10, 189–197 (2007)

    Google Scholar 

  9. Oguey, H.J., Cserveny, S.: MOS Modeling at Low-Current Density, Summer Course on Process and Device Modeling, pp. 555–558. ESAT, Leuven (1996)

    Google Scholar 

  10. Tsividis, Y.P.: Operation and Modeling of the MOS Transistor, 2nd edn. Oxford University Press, Oxford (1999)

    Google Scholar 

  11. Gouveia Filho, O.C., et al.: A compact charge-based MOSFET model for circuit simulation. In: IEEE International Conference on Electronics, Circuits and Systems, pp. 491–494 (1998)

  12. Van Langevelde, R., Klaassen, F.M.: An explicit surface-potential-based MOSFET model for circuit simulation. Solid State Electron. 44, 409–418 (2000)

    Article  Google Scholar 

  13. Basu, D., Dutta, A.: An explicit surface-potential-based MOSFET model incorporating the quantum mechanical effects. Solid State Electron. 50, 1299–1309 (2006)

    Article  Google Scholar 

  14. Kevkić, T., et al.: An improved charge-based MOSFET model with parameterized-logistic fitting functions. In: Proceeding of the 24th International Electrotechnical and Computer Science Conference ERK, Portorož, Slovenia, pp. 15–18 (2015)

  15. Kevkić, T., et al.: Application of generalized logistic functions in surface-potential-based MOSFET modeling. J. Comput. Electron. 16(1), 90–97 (2017)

    Article  Google Scholar 

  16. Osrečki, Ž.: Compact MOSFET model. Thesis, University of Zagreb (2015)

  17. Fonstad, C.: MOSFETs in the sub-threshold region (i.e. a bit below \(V_T\)). In: Microelectronic Devices and Circuits (2009). http://ocw.mit.edu

  18. Chaudhry, A., Roy, J.N.: An Analytical model of inversion layer quantization and gate oxide quantum mechanical tunneling in nano-p-MOSFETs. Electronics 14(2), 86–89 (2010)

    Google Scholar 

  19. Mälureanu, E.-S.: New approach in determining the tunnelling coefficient for a triangular barrier in MIM junctions. Univ. Politeh. Buchar. Sci. Bull. Ser. A 76(2), 251–262 (2014)

    Google Scholar 

  20. Lizzit, D., et al.: Performance benchmarking and effective channel length for nanoscale InAs, In0.53 Ga0.47As, and sSi n-MOSFETs. IEEE Trans. Electron. Devices 61, 2027–2034 (2014)

    Article  Google Scholar 

  21. Sho, S., et al.: A simulation study of short channel effects with a QET model based on Fermi–Dirac statistics and nonparabolicity for high-mobility MOSFETs. J. Comput. Electron. 15(1), 76–83 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladica Stojanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevkić, T., Stojanović, V. & Joksimović, D. Application of the generalized logistic functions in modeling inversion charge density of MOSFET. J Comput Electron 17, 689–697 (2018). https://doi.org/10.1007/s10825-018-1137-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1137-5

Keywords

Navigation