Advertisement

Journal of Computational Electronics

, Volume 17, Issue 2, pp 521–530 | Cite as

On the electronic and transport properties of semiconducting carbon nanotubes: the role of \(\hbox {sp}^3\)-defects

Article
  • 116 Downloads

Abstract

The effect of \(\hbox {sp}^3\)-defects on the electronic and transport properties of semiconducting carbon nanotubes has been systematically studied on the basis of a quantum mechanical tight-binding model. We have calculated the band structure for carbon nanotubes with ordered defect patterns showing a large impact on the bandgap energy whereas for randomly distributed defects the band structure remains relatively robust. The transport behavior has been studied on the basis of the Green’s function method. The results indicate that the conductance of defective carbon nanotubes strongly depends on the number of defects and the tube diameter. We further show that the transport properties can be classified, depending on the number of defects, into two regimes which are either characterized by the mean-free path or the localization length. For both, analytical equations describing the impact of the tube diameter as well as the number of defects are derived. Comparing these values with the channel length indicates the dominant transport regime.

Keywords

Carbon nanotubes Tight-binding Effective band structure Green’s function Transport Defects 

Notes

Acknowledgements

This work was financially supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfAED).

References

  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  2. 2.
    Javey, A., Tu, R., Farmer, D.B., Guo, J., Gordon, R.G., Dai, H.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Klinke, C., Afzali, A., Avouris, P.: Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005)CrossRefGoogle Scholar
  4. 4.
    Klinke, C., Hannon, J.B., Afzali, A., Avouris, P.: Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett. 6, 906 (2006)CrossRefGoogle Scholar
  5. 5.
    Toader, M., Schubel, R., Hartmanna, M., Scharfenberg, L., Jordan, R., Mertig, M., Schulza, S., Gessnera, T., Hermann, S.: Enhancement of carbon nanotube FET performance via direct synthesis of poly (sodium 4-styrenesulfonate) in the transistor channel. Chem. Phys. Lett. 661, 1 (2016)CrossRefGoogle Scholar
  6. 6.
    Li, E.Y.: Band gap engineering of carbon nanotubes via regular addition patterns of covalent functional groups. Carbon 100, 187 (2016)CrossRefGoogle Scholar
  7. 7.
    Seifert, G., Koehler, T., Frauenheim, T.: Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes. Appl. Phys. Lett. 77, 1313 (2000)CrossRefGoogle Scholar
  8. 8.
    Ranjan, N., Seifert, G.: Transport properties of functionalized carbon nanotubes: density-functional Green’s function calculations. Phys. Rev. B 73, 153408 (2006)CrossRefGoogle Scholar
  9. 9.
    Lee, Y.S., Nardelli, M.B., Marzari, N.: Band structure and quantum conductance of nanostructures from maximally localized wannier functions: the case of functionalized carbon nanotubes. Phys. Rev. Lett. 95, 076804 (2005)CrossRefGoogle Scholar
  10. 10.
    Collins, P.G.: Defects and disorder in carbon nanotubes. In: Narlikar, A., Fu, Y. (eds.) Oxford Handbook of Nanoscience and Nanotechnology: Materials: Structures, Properties, and Characterization Techniques. Oxford University Press, Oxford (2010)Google Scholar
  11. 11.
    Claus, M., Teich, D., Mothes, S., Seifert, G., Schroeter, M.: Multiscale-modeling of CNTFETs with non-regular defect pattern. In: International Workshop on Computational Electronics (IWCE), p. 15554437 (2015)Google Scholar
  12. 12.
    Lopez-Bezanilla, A., Blase, X., Roche, S.: Quantum transport properties of chemically functionalized long semiconducting carbon nanotubes. Nano Res. 3, 288 (2010)CrossRefGoogle Scholar
  13. 13.
    Park, H., Zhao, J., Lu, J.P.: Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett. 6, 916 (2006)CrossRefGoogle Scholar
  14. 14.
    Flores, F., Biel, B., Rubio, A., Garcia-Vidal, F.J., Gomez-Navarro, C., de Pablo, P., Gomez-Herrero, J.: Anderson localization regime in carbon nanotubes: size dependent properties. J. Phys. Condens. Matter 20, 304211 (2008)CrossRefGoogle Scholar
  15. 15.
    Teichert, F., Zienert, A., Schuster, J., Schreiber, M.: Strong localization in defective carbon nanotubes: a recursive Green’s function study. New J. Phys. 16, 123026 (2014)CrossRefGoogle Scholar
  16. 16.
    Teichert, F., Zienert, A., Schuster, J., Schreiber, M.: Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime. Comput. Mater. Sci 138, 49 (2017)CrossRefGoogle Scholar
  17. 17.
    Schroeter, M., Claus, M., Sakalas, P., Haferlach, M., Wang, D.: Carbon nanotube FET technology for radio-frequency electronics: sate-of-the-art overview (invited). IEEE J. Electron Devices Soc. 1, 9 (2013)CrossRefGoogle Scholar
  18. 18.
    Claus, M., Mothes, S., Blawid, S., Schröter, M.: COOS: a wave-function based Schrödinger–Poisson solver for ballistic nanotube transistors. J. Comput. Electron. 13, 689 (2014)CrossRefGoogle Scholar
  19. 19.
    Mothes, S., Claus, M., Schroeter, M.: Towards linearity in Schottky barrier CNTFETs. IEEE Trans. Nanotechnol. 14, 372 (2015)CrossRefGoogle Scholar
  20. 20.
    Claus, M., Teich, D., Mothes, S., Seifert, G., Schroeter, M.: Impact of functionalization patterns on the performance of CNTFETs. In: International Workshop on Computational Electronics (IWCE), p. 14485116 (2014)Google Scholar
  21. 21.
    Randić, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449 (2003)CrossRefGoogle Scholar
  22. 22.
    Clar, E.: The Aromatic sextet. In: Rondia, D., Cooke, M., Haroz, R.K. (eds.) Mobile Source Emissions Including Policyclic Organic Species. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 112. Springer, Dordrecht (1983)Google Scholar
  23. 23.
    Franklin, A.D., Luisier, M., Han, S.J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758 (2012)CrossRefGoogle Scholar
  24. 24.
    Popescu, V., Zunger, A.: Extracting \(E\) versus \(k\) effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85, 085201 (2012)CrossRefGoogle Scholar
  25. 25.
    Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett 42, 673 (1979)CrossRefGoogle Scholar
  26. 26.
    Anantram, M.P., Govindan, T.R.: Conductance of carbon nanotubes with disorder: a numerical study. Phys. Rev. B 58, 4882 (1998)CrossRefGoogle Scholar
  27. 27.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)CrossRefMATHGoogle Scholar
  28. 28.
    Nardelli, M.B., Bernholc, J.: Mechanical deformations and coherent transport in carbon nanotubes. Phys. Rev. B 60, R16388(R) (1999)CrossRefGoogle Scholar
  29. 29.
    López-Sancho, M.P., López-Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of the transfer matrices: application to Mo(100). J. Phys. F: Met. Phys. 14, 1205 (1984)CrossRefGoogle Scholar
  30. 30.
    Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12, 203 (2013)CrossRefGoogle Scholar
  31. 31.
    Seifert, G., Porezag, D., Frauenheim, T.: Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int. J. Quantum Chem. 58, 185 (1996)CrossRefGoogle Scholar
  32. 32.
    Cresti, A., Roche, S.: Edge-disorder-dependent transport length scales in graphene nanoribbons: from Klein defects to the superlattice limit. Phys. Rev. B 79, 233404 (2009)CrossRefGoogle Scholar
  33. 33.
    Gomez-Navarro, C., De Pablo, J.D., Gomez-Herrero, J., Biel, B., Garcia-Vidal, F.J., Rubio, A., Flores, F.: Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 4, 534 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair for Theoretical ChemistryTechnische Universität DresdenDresdenGermany
  2. 2.Chair for Electron Devices and Integrated CircuitsTechnische Universität DresdenDresdenGermany
  3. 3.Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany

Personalised recommendations