First-principles study of electron transport in azulene molecular junction: effect of electrode material on electrical rectification behavior

Article
  • 7 Downloads

Abstract

The feasibility of using an azulene molecule as a molecular rectifier with different electrode materials, viz. gold (Au), silver (Ag), and copper (Cu), was investigated using density functional theory (DFT) and the nonequilibrium Green’s function (NEGF) method. It was found that the azulene-like molecule exhibited high conductance and bias-dependent rectification effect. The dipole moment was increased due to the charge effect in the azulene molecular junction, based on charge transfer from the seven- to five-membered ring, giving the system stability and forming a dipole. It was also observed that the azulene–Au molecular junction showed higher rectification ratio than those with Ag or Cu, due to high coupling strength between the molecule and electrodes. Thus, Au electrodes are suggested as a good potential candidate for use in azulene-based highly conductive unimolecular rectifiers operating in lower bias region.

Keywords

Molecular electronics Density functional theory (DFT) Nonequilibrium Green’s function (NEGF) Quantum transport 

Notes

Acknowledgements

We gratefully acknowledge financial support for this project from DST-FIST, Government of India (ref. no. SR/FST/PSI-010/2010).

Author contribution

All authors contributed equally to the paper.

References

  1. 1.
    Aviram, A., Ratner, M.A.: Moleculer rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRefGoogle Scholar
  2. 2.
    Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)CrossRefGoogle Scholar
  3. 3.
    Metzger, R.M.: Unimolecular electronics. Mater. J. Chem. 18, 4364–4396 (2008)CrossRefGoogle Scholar
  4. 4.
    Migliore, A., Nitzan, A.: Nonlinear charge transport in redox molecular junctions: a marcus perspective. ACS Nano 5(8), 6669–6685 (2011)CrossRefGoogle Scholar
  5. 5.
    Parashar, S., Srivastava, P., Pattanaik, M.: Modeling of Cu-linked rectification devices by varying torsion angles. J. Comput. Electron. 12, 775–781 (2013)CrossRefGoogle Scholar
  6. 6.
    Zeng, J., Chen, K.-Q., He, J., Zhang, X.-J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)CrossRefGoogle Scholar
  7. 7.
    Deng, X.Q., Zhang, Z.H., Tang, G.P., Fan, Z.Q., Qiu, M., Guo, C.: Rectifying behaviors induced by BN-doping in trigonal graphene with zigzag edges. Appl. Phys. Lett. 100, 063107 (2012)CrossRefGoogle Scholar
  8. 8.
    Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., et al.: Conductance switching in single molecules through conformational changes. Science 292(5525), 2303–2307 (2001)CrossRefGoogle Scholar
  9. 9.
    Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., Tour, J.M.: Molecular random access memory cell. Appl. Phys. Lett. 78(23), 3735–3737 (2001)CrossRefGoogle Scholar
  10. 10.
    Tour, J.M.: Molecular electronics: synthesis and testing of components. Acc. Chem. Res. 33(11), 791–804 (2000)CrossRefGoogle Scholar
  11. 11.
    Qiu, W., Nguyen, P.D., Skafidas, E.: Graphene nanopores as negative differential resistance devices. J. Appl. Phys. 117(5), 054306 (2015)CrossRefGoogle Scholar
  12. 12.
    Kala, C.P., Priya, P.A., Thiruvadigal, D.J.: Role of side groups and temperature dependent studies in a molecular device. J. Comput. Electron. 14(1), 240–248 (2015)CrossRefGoogle Scholar
  13. 13.
    Qiu, M., Zhang, Z., Fan, Z., Deng, X., Pan, J.: Transport properties of a squeezed carbon monatomic ring: a route to a negative differential resistance device. J. Phys. Chem. C 115(23), 11734–11737 (2011)CrossRefGoogle Scholar
  14. 14.
    Wu, Y., Farmer, D.B., Zhu, W., Han, S.-J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.-M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6(3), 2610–2616 (2012)CrossRefGoogle Scholar
  15. 15.
    Hinchliffe, A., Soscún, H.J.: Ab initio studies of the dipole moment and polarizability of azulene in its ground and excited singlet states. Chem. Phys. Lett. 412(4), 365–368 (2005)CrossRefGoogle Scholar
  16. 16.
    Zhou, K.-G., Zhang, Y.-H., Wang, L.-J., Xie, K.-F., Xiong, Y.-Q., Zhang, H.-L., Wang, C.-W.: Can azulene-like molecules function as substitution-free molecular rectifiers? Phys. Chem. Chem. Phys. 13(35), 15882–15890 (2011)CrossRefGoogle Scholar
  17. 17.
    Dutta, S., Lakshmi, S., Pati, S.K.: Comparative study of electron conduction in azulene and naphthalene. Bull. Mater. Sci. 31(3), 353–358 (2008)CrossRefGoogle Scholar
  18. 18.
    Parashar, S., Srivastava, P., Pattanaik, M., Jain, S.K.: Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance. The. Eur. Phys. J. B 87(9), 220 (2014)CrossRefGoogle Scholar
  19. 19.
    Kergueris, C., Bourgoin, J.-P., Palacin, S., Estève, D., Urbina, C., Magoga, M., Joachim, C.: Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59(19), 12505 (1999)CrossRefGoogle Scholar
  20. 20.
    Hall, L.E., Reimers, J.R., Hush, N.S., Silverbrook, K.: Formalism, analytical model, and a priori Green’s-function-based calculations of the current–voltage characteristics of molecular wires. J. Chem. Phys. 112(3), 1510–1521 (2000)CrossRefGoogle Scholar
  21. 21.
    Palacios, J.J., Pérez-Jiménez, A.J., Louis, E., SanFabián, E., Vergés, J.A.: First-principles approach to electrical transport in atomic-scale nanostructures. Phys. Rev. B 66(3), 035322 (2002)CrossRefGoogle Scholar
  22. 22.
    Pantelides, S.T., Di Ventra, M., Lang, N.D.: Molecular electronics by the numbers. Phys. B 296(1), 72–77 (2001)CrossRefGoogle Scholar
  23. 23.
    Cuevas, J.C., Scheer, E.: Molecular electronics: an introduction to theory and experiment (2010)Google Scholar
  24. 24.
    Stokbro, K., Taylor, J., Brandbyge, M., Mozos, J.-L., Ordejon, P.: Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au (111) surfaces via thiol and thiolate bonds. Comput. Mater. Sci. 27(1), 151–160 (2003)CrossRefGoogle Scholar
  25. 25.
    Zahid, F., Paulsson, M., Datta, S.: Advanced Semiconductors and Organic Nano-Techniques. Electrical Conduction Through Molecules. Academic Press, New York (2003)Google Scholar
  26. 26.
    Engel, E., Dreizler, R.M.: Density Functional Theory. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  27. 27.
    Haug, H., Jahuo, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996)Google Scholar
  28. 28.
    ATOMISTISTIX TOOLKIT version 11.2.3, Quantum Wise A/S. www.quantumwise.com
  29. 29.
    Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction. In: Electron Devices Meeting. IEDM’02. International. IEEE, pp. 703–706 (2002)Google Scholar
  30. 30.
    Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRefGoogle Scholar
  31. 31.
    Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512–2515 (1992)CrossRefGoogle Scholar
  32. 32.
    Ghosh, A.W., Rakshit, T., Datta, S.: Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4(4), 565–568 (2004)CrossRefGoogle Scholar
  33. 33.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14(11), 2725 (2002)Google Scholar
  34. 34.
    Yuan, S., Wang, S., Mei, Q., Ling, Q., Wang, L., Huang, W.: First-principles study of rectification in bis-2-(5-ethynylthienyl) ethyne molecular junctions. J. Phys. Chem. A 115(32), 9033–9042 (2011)CrossRefGoogle Scholar
  35. 35.
    Yin, X., Liu, H., Zhao, J.: Electronic transportation through asymmetrically substituted oligo (phenylene ethynylene) s: Studied by first principles nonequilibrium Green’s function formalism. J. Chem. Phys. 125(9), 094711 (2006)CrossRefGoogle Scholar
  36. 36.
    Taylor, J., Brandbyge, M., Stokbro, K.: Theory of rectification in tour wires: the role of electrode coupling. Phys. Rev. Lett. 89(13), 138301 (2002)CrossRefGoogle Scholar
  37. 37.
    Hiremath, R.K., Hussain, M., Rabinal, K., Mulimani, B.G.: Dipole tuning of charge transport in molecular junctions. Phys. Chem. Chem Phys. 12(11), 2564–2568 (2010)CrossRefGoogle Scholar
  38. 38.
    Morales, G.M., Jiang, P., Yuan, S., Lee, Y., Sanchez, A., You, W., Yu, L.: Inversion of the rectifying effect in diblock molecular diodes by protonation. J. Am. Chem. Soc. 127(30), 10456–10457 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Nano Technology, Center for Materials Science and NanodevicesSRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations