Skip to main content
Log in

Filament-to-dielectric band alignments in \(\hbox {TiO}_{2}\) and \(\hbox {HfO}_{2}\) resistive RAMs

  • S.I. : Computational Electronics of Emerging Memory Elements
  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The next-generation nonvolatile memory storage may well be based on resistive random access memories (RRAMs). \(\hbox {TiO}_{2}\) and \(\hbox {HfO}_{2}\) have been widely used as the resistive switching layer for RRAM devices. However, the electronic properties of the filament-to-dielectric interfaces are still not well understood yet, compared to those of the electrodes and the dielectric. In this work, we study the electronic structures of three typical filament and dielectric structures, \(\hbox {Ti}_{4}\hbox {O}_{7}/\hbox {TiO}_{2}\), \(\hbox {Hf}_{2}\hbox {O}_{3}/\hbox {HfO}_{2}\) and \(\hbox {Hf}/\hbox {HfO}_{2}\), using ab initio calculations. We implement the GGA-1/2 method, which rectifies the band gaps of GGA through self-energy correction. Our calculation predicts an ohmic contact for the \(\hbox {Ti}_{4}\hbox {O}_{7}/\hbox {TiO}_{2}\) interface, where the defective \(\hbox {Ti}_{4}\hbox {O}_{7}\) phase was experimentally identified as the filament composition in \(\hbox {TiO}_{2}\). However, there is a finite Schottky barrier existing in either \(\hbox {Hf}_{2}\hbox {O}_{3}/\hbox {HfO}_{2}\) interface (1.96 eV) or \(\hbox {Hf}/\hbox {HfO}_{2}\) interface (0.61 eV), the two probable filament–dielectric configurations in hafnia-based RRAM. Our results suggest that the distinct filament-to-dielectric band alignments in \(\hbox {TiO}_{x}\) and \(\hbox {HfO}_{x}\) systems account for the much larger resistance window for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in \(\text{ TiO }_{2}\) resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010). doi:10.1038/nnano.2009.456

    Article  Google Scholar 

  2. Xue, K.-H., Blaise, P., Fonseca, L.R.C., Nishi, Y.: Prediction of semimetallic tetragonal \(\text{ Hf }_{2}\text{ O }_{3}\) and \(\text{ Zr }_{2}\text{ O }_{3}\) from first principles. Phys. Rev. Lett. 110, 065502 (2013). doi:10.1103/PhysRevLett.110.065502

    Article  Google Scholar 

  3. Li, Y., Zhong, Y.P., Zhang, J.J., Xu, X.H., Wang, Q., Xu, L., Sun, H.J., Miao, X.S.: Intrinsic memristance mechanism of crystalline stoichiometric \(\text{ Ge }_{2}\text{ Sb }_{2}\text{ Te }_{5}\). Appl. Phys. Lett. 103, 043501 (2013). doi:10.1063/1.4816283

    Article  Google Scholar 

  4. Liu, X., Ji, Z., Tu, D., Shang, L., Liu, J., Liu, M., Xie, C.: Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): polystyrenesulfonate thin film. Org. Electron. 10, 1191–1194 (2009). doi:10.1016/j.orgel.2009.06.007

    Article  Google Scholar 

  5. Zhao, L., Chen, H.-Y., Wu, S.-C., Jiang, Z., Yu, S., Hou, T.-H., Wong, H.-S.P., Nishi, Y.: Multi-level control of conductive nano-filament evolution in \(\text{ HfO }_{2}\) ReRAM by pulse-train operations. Nanoscale 6, 5698 (2014). doi:10.1039/c4nr00500g

    Article  Google Scholar 

  6. Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, C.-J., Seo, D.H., Seo, S., Chung, U.-I., Yoo, I.-K., Kim, K.: A fast, high-endurance and scalable non-volatile memory device made from asymmetric \(\text{ Ta }_{2}\text{ O }_{5-x}/\text{ TaO }_{2-x}\) bilayer structures. Nat. Mater. 10, 625–630 (2011). doi:10.1038/nmat3070

    Article  Google Scholar 

  7. Kwon, J., Sharma, A.A., Bain, J.A., Picard, Y.N., Skowronski, M.: Oxygen vacancy creation, drift, and aggregation in \(\text{ TiO }_{2}\)-based resistive switches at low temperature and voltage. Adv. Funct. Mater. 25, 2876–2883 (2015). doi:10.1002/adfm.201500444

    Article  Google Scholar 

  8. Kim, D.C., Seo, S., Ahn, S.E., Suh, D.-S., Lee, M.J., Park, B.-H., Yoo, I.K., Baek, I.G., Kim, H.-J., Yim, E.K., Lee, J.E., Park, S.O., Kim, H.S., Chung, U.-I., Moon, J.T., Ryu, B.I.: Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006). doi:10.1063/1.2204649

    Article  Google Scholar 

  9. Kozicki, M.N., Gopalan, C., Balakrishnan, M., Mitkova, M.: A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotechnol. 5, 535–544 (2006). doi:10.1109/TNANO.2006.880407

    Article  Google Scholar 

  10. Guo, Y., Robertson, J.: Ab initio calculations of materials selection of oxides for resistive random access memories. Microelectron. Eng. 147, 339–343 (2015). doi:10.1016/j.mee.2015.04.049

    Article  Google Scholar 

  11. Carta, D., Hitchcock, A.P., Guttmann, P., Regoutz, A., Khiat, A., Serb, A., Gupta, I., Prodromakis, T.: Spatially resolved \(\text{ TiO }_{x}\) phases in switched RRAM devices using soft X-ray spectromicroscopy. Sci. Rep. 6, 21525 (2016). doi:10.1038/srep21525

    Article  Google Scholar 

  12. Wang, J., Li, Y., Deng, L., Wei, N., Weng, Y., Dong, S., Qi, D., Qiu, J., Chen, X., Wu, T.: High-performance photothermal conversion of narrow-bandgap \(\text{ Ti }_{2}\text{ O }_{3}\) nanoparticles. Adv. Mater. 29, 1603730 (2017). doi:10.1002/adma.201603730

    Article  Google Scholar 

  13. Biju, K.P., Liu, X., Bourim, E.M., Kim, I., Jung, S., Siddik, M., Lee, J., Hwang, H.: Asymmetric bipolar resistive switching in solution-processed \(\text{ Pt }/\text{ TiO }_{2}/\text{ W }\) devices. J. Phys. Appl. Phys. 43, 495104 (2010). doi:10.1088/0022-3727/43/49/495104

    Article  Google Scholar 

  14. Lai, C.-H., Liu, C.-Y., Hsu, C.-H., Lee, Y.-M., Lin, J.-S., Yang, H.: Effect of firing atmosphere and bottom electrode on resistive switching mode in \(\text{ TiO }_{2}\) thin films. Thin Solid Films 529, 430–434 (2013). doi:10.1016/j.tsf.2012.09.025

    Article  Google Scholar 

  15. Sacchetto, D., Zervas, M., Temiz, Y., De Micheli, G., Leblebici, Y.: Resistive programmable through-silicon vias for reconfigurable 3-D fabrics. IEEE Trans. Nanotechnol. 11, 8–11 (2012). doi:10.1109/TNANO.2011.2160557

    Article  Google Scholar 

  16. Chen, Y.L., Analytis, J.G., Chu, J.-H., Liu, Z.K., Mo, S.-K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.-X.: Experimental realization of a three-dimensional topological insulator, \(\text{ Bi }_{2}\text{ Te }_{3}\). Science 325, 178–181 (2009). doi:10.1126/science.1173034

    Article  Google Scholar 

  17. Tada, M., Sakamoto, T., Banno, N., Aono, M., Hada, H., Kasai, N.: Nonvolatile crossbar switch using \(\text{ TiO }_{x}/\text{ TaSiO }_{y}\) solid electrolyte. IEEE Trans. Electron. Devices 57, 1987–1995 (2010). doi:10.1109/TED.2010.2051191

    Article  Google Scholar 

  18. Nickel, J.H., Strachan, J.P., Pickett, M.D., Tom Schamp, C., Yang, J.J., Graham, J.A., Williams, R.S.: Memristor structures for high scalability: non-linear and symmetric devices utilizing fabrication friendly materials and processes. Microelectron. Eng. 103, 66–69 (2013). doi:10.1016/j.mee.2012.09.007

    Article  Google Scholar 

  19. Jeong, H.Y., Kim, Y.I., Lee, J.Y., Choi, S.-Y.: A low-temperature-grown \(\text{ TiO }_{2}\)-based device for the flexible stacked RRAM application. Nanotechnology 21, 115203 (2010). doi:10.1088/0957-4484/21/11/115203

    Article  Google Scholar 

  20. Xue, K.-H., Traore, B., Blaise, P., Fonseca, L.R.C., Vianello, E., Molas, G., Salvo, B.D., Ghibaudo, G., Magyari-Kope, B., Nishi, Y.: A combined ab initio and experimental study on the nature of conductive filaments in resistive random access memory. IEEE Trans. Electron. Devices 61, 1394–1402 (2014). doi:10.1109/TED.2014.2312943

    Article  Google Scholar 

  21. Chen, L., Xu, Y., Sun, Q.-Q., Zhou, P., Wang, P.-F., Ding, S.-J., Zhang, D.W.: Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance. IEEE Electron. Device Lett. (2010). doi:10.1109/LED.2010.2069081

  22. Deng, N., Pang, H., Wu, W.: Effects of different dopants on switching behavior of \(\text{ HfO }_{2}\)-based resistive random access memory. Chin. Phys. B 23, 107306 (2014). doi:10.1088/1674-1056/23/10/107306

    Article  Google Scholar 

  23. Wang, Y., Liu, Q., Long, S., Wang, W., Wang, Q., Zhang, M., Zhang, S., Li, Y., Zuo, Q., Yang, J., Liu, M.: Investigation of resistive switching in Cu-doped \(\text{ HfO }_{2}\) thin film for multilevel non-volatile memory applications. Nanotechnology 21, 045202 (2010). doi:10.1088/0957-4484/21/4/045202

    Article  Google Scholar 

  24. Long, S., Lian, X., Cagli, C., Perniola, L., Miranda, E., Liu, M., Sune, J.: A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron. Device Lett. 34, 999–1001 (2013). doi:10.1109/LED.2013.2266332

    Article  Google Scholar 

  25. Zhao, L., Park, S.-G., Magyari-Köpe, B., Nishi, Y.: First principles modeling of charged oxygen vacancy filaments in reduced \(\text{ TiO }_{2}\)-implications to the operation of non-volatile memory devices. Math. Comput. Model. 58, 275–281 (2013). doi:10.1016/j.mcm.2012.11.009

    Article  Google Scholar 

  26. Bradley, S.R., Bersuker, G., Shluger, A.L.: Modelling of oxygen vacancy aggregates in monoclinic \(\text{ HfO }_{2}\): Can they contribute to conductive filament formation? J. Phys. Condens. Matter. 27, 415401 (2015). doi:10.1088/0953-8984/27/41/415401

    Article  Google Scholar 

  27. Xue, K.-H., Blaise, P., Fonseca, L.R.C., Molas, G., Vianello, E., Traoré, B., Salvo, B.D., Ghibaudo, G., Nishi, Y.: Grain boundary composition and conduction in \(\text{ HfO }_{2}\): an ab initio study. Appl. Phys. Lett. 102, 201908 (2013). doi:10.1063/1.4807666

    Article  Google Scholar 

  28. Zhao, L., Clima, S., Magyari-Köpe, B., Jurczak, M., Nishi, Y.: Ab initio modeling of oxygen-vacancy formation in doped-\(\text{ HfO }_{x}\) RRAM: effects of oxide phases, stoichiometry, and dopant concentrations. Appl. Phys. Lett. 107, 013504 (2015). doi:10.1063/1.4926337

    Article  Google Scholar 

  29. Magyari-Köpe, B., Tendulkar, M., Park, S.-G., Lee, H.D., Nishi, Y.: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: \(\text{ TiO }_{2}\), NiO and \(\text{ Pr }_{0.7}\text{ Ca }_{0.3}\text{ MnO }_{3}\). Nanotechnology 22, 254029 (2011). doi:10.1088/0957-4484/22/25/254029

    Article  Google Scholar 

  30. Kim, S., Choi, Y.-K.: A comprehensive study of the resistive switching mechanism in \(\text{ Al }/\text{ TiO }_{x}/\text{ TiO }_{2}/\text{ Al }\)-structured RRAM. IEEE Trans. Electron. Devices 56, 3049–3054 (2009). doi:10.1109/TED.2009.2032597

    Article  Google Scholar 

  31. Carta, D., Salaoru, I., Khiat, A., Regoutz, A., Mitterbauer, C., Harrison, N.M., Prodromakis, T.: Investigation of the switching mechanism in \(\text{ TiO }_{2}\)-based RRAM: a two-dimensional EDX approach. ACS Appl. Mater. Interfaces 8, 19605–19611 (2016). doi:10.1021/acsami.6b04919

    Article  Google Scholar 

  32. Lakkis, S., Schlenker, C., Chakraverty, B.K., Buder, R., Marezio, M.: Metal-insulator transitions in \(\text{ Ti }_{4}\text{ O }_{7}\) single crystals: crystal characterization, specific heat, and electron paramagnetic resonance. Phys. Rev. B 14, 1429–1440 (1976). doi:10.1103/PhysRevB.14.1429

    Article  Google Scholar 

  33. Strachan, J.P., Pickett, M.D., Yang, J.J., Aloni, S., David Kilcoyne, A.L., Medeiros-Ribeiro, G., Stanley Williams, R.: Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010). doi:10.1002/adma.201000186

    Article  Google Scholar 

  34. Bersuker, G., Gilmer, D.C., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., Larcher, L., McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafría, M.: Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110, 124518 (2011). doi:10.1063/1.3671565

    Article  Google Scholar 

  35. Lin, K.-L., Hou, T.-H., Shieh, J., Lin, J.-H., Chou, C.-T., Lee, Y.-J.: Electrode dependence of filament formation in \(\text{ HfO }_{2}\) resistive-switching memory. J. Appl. Phys. 109, 084104 (2011). doi:10.1063/1.3567915

    Article  Google Scholar 

  36. Kamiya, K., Young Yang, M., Park, S.-G., Magyari-Köpe, B., Nishi, Y., Niwa, M., Shiraishi, K.: ON–OFF switching mechanism of resistive-random-access-memories based on the formation and disruption of oxygen vacancy conducting channels. Appl. Phys. Lett. 100, 073502 (2012). doi:10.1063/1.3685222

    Article  Google Scholar 

  37. Traoré, B., Blaise, P., Sklénard, B.: Reduction of monoclinic \(\text{ HfO }_2\): a cascading migration of oxygen and its interplay with a high electric field. J. Phys. Chem. C 120, 25023–25029 (2016). doi:10.1021/acs.jpcc.6b06913

    Article  Google Scholar 

  38. Li, C., Gao, B., Yao, Y., Guan, X., Shen, X., Wang, Y., Huang, P., Liu, L., Liu, X., Li, J., Gu, C., Kang, J., Yu, R.: Direct observations of nanofilament evolution in switching processes in \(\text{ HfO }_{2}\)-based resistive random access memory by in situ TEM studies. Adv. Mater. 29, 1602976 (2017). doi:10.1002/adma.201602976

    Article  Google Scholar 

  39. Syu, Y.-E., Chang, T.-C., Lou, J.-H., Tsai, T.-M., Chang, K.-C., Tsai, M.-J., Wang, Y.-L., Liu, M., Sze, S.M.: Atomic-level quantized reaction of \(\text{ HfO }_{x}\) memristor. Appl. Phys. Lett. 102, 172903 (2013). doi:10.1063/1.4802821

    Article  Google Scholar 

  40. Puchala, B., Van der Ven, A.: Thermodynamics of the Zr–O system from first-principles calculations. Phys. Rev. B (2013). doi:10.1103/PhysRevB.88.094108

  41. Zhang, J., Oganov, A.R., Li, X., Xue, K.-H., Wang, Z., Dong, H.: Pressure-induced novel compounds in the Hf-O system from first-principles calculations. Phys. Rev. B (2015). doi:10.1103/PhysRevB.92.184104

  42. Traore, B., Blaise, P., Vianello, E., Perniola, L., De Salvo, B., Nishi, Y.: HfO\(_2\)-based RRAM: electrode effects, \(\text{ Ti }/\text{ HfO }_{2}\) interface, charge injection, and oxygen (O) defects diffusion through experiment and ab initio calculations. IEEE Trans. Electron. Devices 63, 360–368 (2016). doi:10.1109/TED.2015.2503145

    Article  Google Scholar 

  43. Wedig, A., Luebben, M., Cho, D.-Y., Moors, M., Skaja, K., Rana, V., Hasegawa, T., Adepalli, K.K., Yildiz, B., Waser, R., Valov, I.: Nanoscale cation motion in \(\text{ TaO }_{x}, \text{ HfO }_{x}\) and \(\text{ TiO }_{x}\) memristive systems. Nat. Nanotechnol. 11, 67–74 (2015). doi:10.1038/nnano.2015.221

    Article  Google Scholar 

  44. Lee, S.R., Kim, Y.-B., Chang, M., Kim, K.M., Lee, C.B., Hur, J.H., Park, G.-S., Lee, D., Lee, M.-J., Kim, C.J., Chung, U.-I., Yoo, I.-K., Kim, K.: Multi-level switching of triple-layered \(\text{ TaO }_{x}\) RRAM with excellent reliability for storage class memory. Presented at the June (2012)

  45. Park, S., Jung, S., Siddik, M., Jo, M., Park, J., Kim, S., Lee, W., Shin, J., Lee, D., Choi, G., Woo, J., Cha, E., Lee, B.H., Hwang, H.: Self-formed Schottky barrier induced selector-less RRAM for cross-point memory applications. Phys. Status Solidi RRL Rapid Res. Lett. 6, 454–456 (2012). doi:10.1002/pssr.201206382

    Article  Google Scholar 

  46. Park, J., Biju, K.P., Jung, S., Lee, W., Lee, J., Kim, S., Park, S., Shin, J., Hwang, H.: Multibit operation of \(\text{ TiO }_{x}\)-based ReRAM by Schottky barrier height engineering. IEEE Electron. Device Lett. 32, 476–478 (2011). doi:10.1109/LED.2011.2109032

    Article  Google Scholar 

  47. Jeong, D.S., Schroeder, H., Waser, R.: Abnormal bipolar-like resistance change behavior induced by symmetric electroforming in \(\text{ Pt }/\text{ TiO }_{2}/\text{ Pt }\) resistive switching cells. Nanotechnology 20, 375201 (2009). doi:10.1088/0957-4484/20/37/375201

    Article  Google Scholar 

  48. Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012). doi:10.1088/0034-4885/75/7/076502

    Article  Google Scholar 

  49. Padilha, A.C.M., Rocha, A.R., Dalpian, G.M.: DFT + U simulation of the \(\text{ Ti }_{4}\text{ O }_{7}-\text{ TiO }_{2}\) interface. Phys. Rev. Appl. (2015). doi:10.1103/PhysRevApplied.3.024009

  50. Amtout, A., Leonelli, R.: Optical properties of rutile near its fundamental band gap. Phys. Rev. B. 51, 6842–6851 (1995). doi:10.1103/PhysRevB.51.6842

    Article  Google Scholar 

  51. Li, H., Zhang, Z., Shi, L.P.: Identifying and engineering the electronic properties of the resistive switching interface. J. Electron. Mater. 45, 1142–1153 (2016). doi:10.1007/s11664-015-4249-8

    Article  Google Scholar 

  52. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). doi:10.1063/1.1564060

    Article  Google Scholar 

  53. Celano, U., Goux, L., Degraeve, R., Fantini, A., Richard, O., Bender, H., Jurczak, M., Vandervorst, W.: Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015). doi:10.1021/acs.nanolett.5b03078

    Article  Google Scholar 

  54. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  55. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). doi:10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  56. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  57. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  58. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). doi:10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  59. Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron–gas problem. Phys. Rev. 139, A796–A823 (1965). doi:10.1103/PhysRev.139.A796

    Article  Google Scholar 

  60. Ribeiro, M., Fonseca, L.R.C., Ferreira, L.G.: Accurate prediction of the \(\text{ Si }/\text{ SiO }_{2}\) interface band offset using the self-consistent ab initio DFT/LDA-1/2 method. Phys. Rev. B (2009). doi:10.1103/PhysRevB.79.241312

  61. Pelá, R.R., Caetano, C., Marques, M., Ferreira, L.G., Furthmüller, J., Teles, L.K.: Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach. Appl. Phys. Lett. 98, 151907 (2011). doi:10.1063/1.3576570

    Article  Google Scholar 

  62. Xue, K.-H., Fonseca, L.R.C., Miao, X.-S.: Ferroelectric fatigue in layered perovskites from self-energy corrected density functional theory. RSC Adv. 7, 21856–21868 (2017). doi:10.1039/C7RA01650F

  63. Yin, X.-B., Yang, R., Xue, K.-H., Tan, Z.-H., Zhang, X.-D., Miao, X.-S., Guo, X.: Mimicking the brain functions of learning, forgetting and explicit/implicit memories with \(\text{ SrTiO }_{3}\)-based memristive devices. Phys. Chem. Chem. Phys. 18, 31796–31802 (2016). doi:10.1039/C6CP06049H

    Article  Google Scholar 

  64. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-\(N\) materials simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002). doi:10.1088/0953-8984/14/11/302

    Article  Google Scholar 

  65. Clendenen, R.L., Drickamer, H.G.: Lattice parameters of nine oxides and sulfides as a function of pressure. J. Chem. Phys. 44, 4223–4228 (1966). doi:10.1063/1.1726610

    Article  Google Scholar 

  66. Pascual, J., Camassel, J., Mathieu, H.: Resolved quadrupolar transition in \(\text{ TiO }_{2}\). Phys. Rev. Lett. 39, 1490–1493 (1977). doi:10.1103/PhysRevLett.39.1490

    Article  Google Scholar 

  67. Lee, H.-Y., Chen, P.-S., Wang, C.-C., Maikap, S., Tzeng, P.-J., Lin, C.-H., Lee, L.-S., Tsai, M.-J.: Low-power switching of nonvolatile resistive memory using hafnium oxide. Jpn. J. Appl. Phys. 46, 2175–2179 (2007). doi:10.1143/JJAP.46.2175

    Article  Google Scholar 

  68. Müller, J., Schröder, U., Böscke, T.S., Müller, I., Böttger, U., Wilde, L., Sundqvist, J., Lemberger, M., Kücher, P., Mikolajick, T., Frey, L.: Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011). doi:10.1063/1.3667205

    Article  Google Scholar 

  69. El-Shanshoury, I.A., Rudenko, V.A., Ibrahim, I.A.: Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides. J. Am. Ceram. Soc. 53, 264–268 (1970). doi:10.1111/j.1151-2916.1970.tb12090.x

    Article  Google Scholar 

  70. Balog, M., Schieber, M., Michman, M., Patai, S.: Chemical vapor deposition and characterization of \(\text{ HfO }_{2}\) films from organo-hafnium compounds. Thin Solid Films 41, 247–259 (1977). doi:10.1016/0040-6090(77)90312-1

    Article  Google Scholar 

  71. Harada, S., Tanaka, K., Inui, H.: Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases. J. Appl. Phys. 108, 083703 (2010). doi:10.1063/1.3498801

    Article  Google Scholar 

  72. Anderson, J.S., Hyde, B.G.: On the possible role of dislocations in generating ordered and disordered shear structures. J. Phys. Chem. Solids 28, 1393–1408 (1967). doi:10.1016/0022-3697(67)90268-5

    Article  Google Scholar 

  73. Van de Walle, C.G., Martin, R.M.: Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621–5634 (1986). doi:10.1103/PhysRevB.34.5621

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MOST of China under Grant Nos. 2016YFA0203800 and 2017YFB0701701, the Natural Science Foundation of Hubei Province under Grant No. 2016CFB223, the Fundamental Research Funds of Wuhan City under Grant No. 2017010201010106 and the Fundamental Research Funds for the Central Universities of China under Grant No. HUST:2016YXMS212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan-Hao Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZH., Xue, KH. & Miao, XS. Filament-to-dielectric band alignments in \(\hbox {TiO}_{2}\) and \(\hbox {HfO}_{2}\) resistive RAMs. J Comput Electron 16, 1057–1065 (2017). https://doi.org/10.1007/s10825-017-1060-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1060-1

Keywords

Navigation