Abstract
We present a stochastic model for resistance switching devices in which a square grid of resistor breakers plays the role of the insulator switching layer. The probability of breaker switching between two fixed resistance values, \(R_\mathrm{OFF}\) and \(R_\mathrm{ON}\), is determined by the corresponding voltage drop and thermal Joule heating. The breaker switching produces the overall device resistance change. Salient features of all the switching operations of bipolar resistance switching memories (RRAMs) are reproduced by the model and compared to a prototypical \(\hbox {HfO}_2\)-based RRAM device. In particular, the need of a forming process that leads a fresh highly insulating device to a low resistance state (LRS) is captured by the model. Moreover, the model is able to reproduce the RESET process, which partially restores the insulating state through a gradual resistance transition as a function of the applied voltage and the abrupt nature of the SET process that restores the LRS. Furthermore, the multilevel capacity of a typical RRAM device obtained by tuning RESET voltage and SET compliance current is reproduced. The manuscript analyses the peculiar ingredients of the model and their influence on the simulated current–voltage curves and, in addition, provides a detailed description of the mechanisms that connect the switching of the single breakers and that of the overall device.
Similar content being viewed by others
Notes
the fraction of breaker is evaluated with respect of the total amount of breakers in the grid, i.e., \((m-1)\cdot n\) vertical and \(m\cdot (n-1)\) horizontal breakers.
References
Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502 (2012). doi:10.1088/0034-4885/75/7/076502
Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-Oxide RRAM. Proc. IEEE 100(6), 1951 (2012). doi:10.1109/JPROC.2012.2190369
Chen, H.Y., Brivio, S., Chang, C.C., Frascaroli, J., Hou, T.H., Hudec, B., Liu, M., Lv, H., Molas, G., Sohn, J., Spiga, S., Teja, V.M., Vianello, E., Wong, H.S.P.: Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication. J. Electroceramics (2017). doi:10.1007/s10832-017-0095-9
Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765 (2011). doi:10.1007/s00339-011-6264-9
Covi, E., Brivio, S., Frascaroli, J., Fanciulli, M., Spiga, S.: (Invited) Analog HfO2-RRAM switches for neural networks. ECS Trans. 75(32), 85 (2017). doi:10.1149/07532.0085ecst
Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Analog memristive synapse in spiking networks implementing unsupervised learning. Front. Neurosci. 10, 482 (2016). doi:10.3389/fnins.2016.00482
Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G., Likharev, K.K., Strukov, D.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nat. Lett. 521, 61 (2015). doi:10.1038/nature14441
Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., DeSalvo, B., Perniola, L.: HfO\(_{\text{2 }}\)-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans. Electron Devices 62(8), 2494 (2015). doi:10.1109/TED.2015.2440102
Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Steward, D.R., Williams, R.S.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873 (2010). doi:10.1038/nature08940
Rosezin, R., Linn, E., Kügeler, C., Bruchhaus, R., Waser, R.: Crossbar logic using bipolar and complementary resistive switches. IEEE Electron Device Lett. 32(6), 710 (2011). doi:10.1109/LED.2011.2127439
Chen, P.Y., Yu, S.: Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 62(12), 4022 (2015). doi:10.1109/TED.2015.2492421
Huang, P., Liu, X.Y., Chen, B., Li, H.T., Wang, Y.J., Deng, Y.X., Wei, K.L., Zeng, L., Gao, B., Du, G., Zhang, X., Kang, J.F.: A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Devices 60(12), 4090 (2013). doi:10.1109/TED.2013.2287755
Piccolboni, G, Molas, G., Portal, J.M., Coquand, R., Bocquet, M., Garbin, D., Vianello, E., Carabasse, C., Delaye, V., Pellissier, C., Magis, T., Cagli, C., Gely, M., Cueto, O., Deleruyelle, D., Ghibaudo, G., Salvo, B.D., Perniola, L.: Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications. In: IEEE International Electron Devices Meeting (IEDM), pp. 17.2.1–17.2.4. (2015). doi:10.1109/IEDM.2015.7409717
Degraeve, R., Fantini, A., Raghavan, N., Goux, L., Clima, S., Govoreanu, B., Belmonte, A., Linten, D., Jurczak, M.: Causes and consequences of the stochastic aspect of filamentary RRAM. Microelectron. Eng. 147, 171 (2015). doi:10.1016/j.mee.2015.04.025
Balatti, S., Ambrogio, S., Carboni, R., Milo, V., Wang, Z., Calderoni, A., Ramaswamy, N., Ielmini, D.: Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63(5), 2029 (2016). doi:10.1109/TED.2016.2537792
Bill, J., Legenstein, R.: A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Front. Neurosci. 8, 412 (2014). doi:10.3389/fnins.2014.00412
Gao, B., Liu, L., Kang, J.: Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide. Prog. Nat. Sci. Mater. Int. 25(1), 47 (2015). doi:10.1016/j.pnsc.2015.01.005
Padovani, A., Larcher, L., Pirrotta, O., Vandelli, L., Bersuker, G.: Microscopic modeling of HfO\(_x\) RRAM operations: from forming to switching. IEEE Trans. Electron Devices 62(6), 1998 (2015). doi:10.1109/TED.2015.2418114
Abbaspour, E., Menzel, S., Jungemann, C.: The role of the interface reactions in the electroforming of redox-based resistive switching devices using KMC simulations. In: 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 293–296. doi:10.1109/SISPAD.2015.7292317
Brivio, S., Frascaroli, J., Spiga, S.: Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO\(_2\)/TiN devices. Appl. Phys. Lett. 107(2), 023504 (2015). doi:10.1063/1.4926340
Frascaroli, J., Brivio, S., Ferrarese Lupi, F., Seguini, G., Boarino, L., Perego, M., Spiga, S.: Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly. ACS Nano 9(3), 2518 (2015). doi:10.1021/nn505131b
Bersuker, G., Gilmer, D., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., Larcher, L., McKenna, K., Schluger, A., Iglesias, V., Porti, M., Nafría, M.: Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110(12), 124518 (2011). doi:10.1063/1.3671565
Brivio, S., Tallarida, G., Cianci, E., Spiga, S.: Formation and disruption of conductive filaments in a HfO\(_2\)/TiN structure. Nanotechnology 25(38), 385705 (2014). doi:10.1088/0957-4484/25/38/385705
Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309 (2011). doi:10.1109/TED.2011.2167513
Brivio, S., Tallarida, G., Perego, D., Franz, S., Deleruyelle, D., Muller, C., Spiga, S.: Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012). doi:10.1063/1.4769044
Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). doi:10.1088/0957-4484/24/38/384010
Brivio, S., Covi, E., Serb, A., Prodromakis, T., Fanciulli, M.: S. SpigaExperimental study of gradual/abrupt dynamics of HfO2-based memristive devices. Appl. Phys. Lett. 109(13), 133504 (2016). doi:10.1063/1.4963675
Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.W., Jung, C.U., Seo, S., Lee, M.J., Noh, T.W.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008). doi:10.1002/adma.200702024
Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D.W., Noh, T.W.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009). doi:10.1103/PhysRevLett.102.026801
Liu, C., Chae, S.C., Lee, J.S., Chang, S.H., Lee, S.B., Kim, D.W., Jung, C.U., Seo, S., Ahn, S.E., Kahng, B., Noh, T.W.: Abnormal resistance switching behaviours of NiO thin films: possible occurrence of both formation and rupturing of conducting channels. J. Phys. D Appl. Phys. 42(1), 015506 (2009). doi:10.1088/0022-3727/42/1/015506
Kim, K., Yoon, S.J., Choi, W.Y.: Dual random circuit breaker network model with equivalent thermal circuit network. Appl. Phys. Express 7(2), 024203 (2014). doi:10.7567/APEX.7.024203
Xing, J., Li, Q., Tian, X., Li, Z., Xu, H.: A memristor random circuit breaker model accounting for stimulus thermal accumulation. IEICE Electron. Express advpub (2016). doi:10.1587/elex.13.20160376
Lee, S.B., Lee, J.S., Chang, S.H., Yoo, H.K., Kang, B.S., Kahng, B., Lee, M.J., Kim, C.J., Noh, T.W.: Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching. Appl. Phys. Lett. 98(3), 033502 (2011). doi:10.1063/1.3543776
Li, C., Gao, B., Yao, Y., Guan, X., Shen, X., Wang, Y., Huang, P., Liu, L., Liu, X., Li, J., Gu, C., Kang, J., Yu, R.: Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. (2017). doi:10.1002/adma.201602976.1602976
Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), IEEE International, 2011, pp. 17.3.1–17.3.4 (2011). doi:10.1109/IEDM.2011.6131572
Yu, S., Chen, Y.Y., Guan, X., Wong, H.S.P., Kittl, J.A.: A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory. Appl. Phys. Lett. 100(4), 043507 (2012). doi:10.1063/1.3679610
Brivio, S., Covi, E., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Gradual set dynamics in \(\text{HfO }_2\)-based memristor driven by sub-threshold voltage pulses. In Proceedings of IEEE International Conference on Memristive Systems (MEMRISYS), pp. 1–2 (2015). doi:10.1109/MEMRISYS.2015.7378383
Brivio, S., Frascaroli, J., Spiga, S.: Role of Al doping in the filament disruption in \(\text{ HfO }_2\) resistance switches. Nanotechnology (2017). doi:10.1088/1361-6528/aa8013
Frascaroli, J., Volpe, F.G., Brivio, S., Spiga, S.: Effect of Al doping on the retention behavior of \(\text{ HfO }_2\) resistive switching memories. Microelectron. Eng. 147, 104 (2015). doi:10.1016/j.mee.2015.04.043
Spiga, S., Lamperti, A., Wiemer, C., Perego, M., Cianci, E., Tallarida, G., Lu, H., Alia, M., Volpe, F., Fanciulli, M.: Resistance switching in amorphous and crystalline binary oxides grown by electron beam evaporation and atomic layer deposition. Microelectron. Eng. 85(12), 2414 (2008). doi:10.1016/j.mee.2008.09.018
Spiga, S., Lamperti, A., Cianci, E., Volpe, F.G., Fanciulli, M.: Transition metal binary oxides for ReRAM applications. ECS Trans. 25(6), 411 (2009). doi:10.1149/1.3206640
Knudsen, H.A., Fazekas, S.: Robust algorithm for random resistor networks using hierarchical domain structure. J. Comput. Phys. 211(2), 700 (2006). doi:10.1016/j.jcp.2005.06.007
Ferragut, R., Dupasquier, A., Brivio, S., Bertacco, R., Egger, W.: Study of defects in an electroresistive Au/La\(_{2/3}\)Sr\(_{1/3}\)MnO\(_3\)/SrTiO\(_3\)(001) heterostructure by positron annihilation. J. Appl. Phys. 110, 053511 (2011). doi:10.1063/1.3631825
Traoré, B., Baise, P., Vianello, E., Grampiex, H., Bonnevialle, A., Jalaguier, E., Molas, G., Jeannot, S., Perniola, L., De Salvo, B., Nishi, Y.: Microscopic understanding of the low resistance state retention in HfO\(_2\) and HfAlO based RRAM. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), p. 21.5.1 (2013). doi:10.1109/IEDM.2014.7047097
Zhao, L., Ryu, SW., Hazeghi, A., Duncan, D., Magyari-Köpe, B., Nishi, Y.: Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics: a systematic study. In: 2013 Symposium on VLSI Technology (VLSIT), p. T106 (2013)
Zhang, H., Gao, B., Sun, B., Chen, G., Zeng, L., Liu, L., Liu, X., Lu, J., Han, R., Kang, J., Yu, B.: Ionic doping effect in ZrO\(_2\) resistive switching memory. Appl. Phys. Lett. 96(12), 123502 (2010). doi:10.1063/1.3364130
Wu, Y., Yu, S., Wong, H.S., Chen, Y.S., Lee , H.Y., Wang, S.M., . Gu, P.Y., Chen, F., Tsai, M.J.: Circuit implementation of spike time dependent plasticity (STDP) for artificial synapse. In: Proceedings of IEEE International Memory Workshop (IMW), pp. 1–4 (2012). doi:10.1109/IMW.2012.6213663
Park, J., Woo, J., Prakash, A., Lee, S., Lim, S., Hwang, H.: Improved reset breakdown strength in a HfOx-based resistive memory by introducing RuOx oxygen diffusion barrier. AIP Adv. 26(5), 055114 (2016). doi:10.1063/1.4950966
Russo, U., Ielmini, D., Cagli, C., Lacaita, A.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193 (2009). doi:10.1109/TED.2008.2010584
Celano, U., Goux, L., Belmonte, A., Giammaria, G., Opsomer, K., Detavernier, C., Richard, O., Bender, H., Irrera, F., Jurczak, M., Vandervorst, W.: Progressive versus abrupt reset behavior in conductive bridging devices: A C-AFM tomography study. In: IEEE International Electron Devices Meeting, pp. 14.1.1–14.1.4 (2014). doi:10.1109/IEDM.2014.7047048
Jana, D., Roy, S., Panja, R., Dutta, M., Rahaman, S.Z., Mahapatra, R., Maikap, S.: Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 10, 1 (2015). doi:10.1186/s11671-015-0880-9
Traoré, B., Blaise, P., Vianello, E., Perniola, L., Salvo, B.D., Nishi, Y.: HfO2-Based RRAM: Electrode Effects, Ti/HfO2 Interface, Charge Injection, and Oxygen (O) Defects Diffusion Through Experiment and Ab Initio Calculations. IEEE Trans. Electron Devices 63(1), 360 (2016). doi:10.1109/TED.2015.2503145
Ambrogio, S., Balatti, S., Gilmes, D., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378 (2014). doi:10.1109/TED.2014.2325531
Marchewka, A., Roesgen, B., Skaja, K., Du, H., Jia, C.L., Mayer, J., Rana, V., Waser, R., Menzel, S.: Nanoionic resistive switching memories: on the physical nature of the dynamic reset process. Adv. Electron. Mater. 2(1), 1500233 (2016). doi:10.1002/aelm.201500233.1500233
Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., Lu, W.D.: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203 (2015). doi:10.1021/acs.nanolett.5b00697
Vandelli, L., Padovani, A., Larcher, L., Broglia, G., Ori, G., Montorsi, M., Bersuker, G., Pavan, P.: Comprehensive physical modeling of forming and switching operations in HfO\(_{\text{2 }}\) RRAM devices. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), pp. 17.5.1–17.5.4 (2011). doi:10.1109/IEDM.2011.6131574
Menzel, S., Böttger, U., Wimmer, M., Salinga, M.: Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306 (2015). doi:10.1002/adfm.201500825
Acknowledgements
The work is partially supported by the European Project H2020-ICT-2015 NEUral computing aRchitectures in Advanced Monolithic 3D-VLSI nano-technologies (\(\hbox {NEURAM}^3\), Grant Agreement No. 687299).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brivio, S., Spiga, S. Stochastic circuit breaker network model for bipolar resistance switching memories. J Comput Electron 16, 1154–1166 (2017). https://doi.org/10.1007/s10825-017-1055-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-017-1055-y